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Section 1
Introduction

The objectives of the Heterogeneous Distributed Information Management for the Infosphere
(HDIMI) project have their origin in ‘1 for the Warrior [J6193]. That document stated the
importance of providing individual warriors, whatever their role, with relevant and timely
information from the global Infosphere (see Figure 1). More recently, DoD’s Joint Vision 2010
[CJCS98] has emphasized the key role of information superiority in achieving military success.
Information superiority leads to enhanced battlespace awareness (understanding of the current
military situation) and speed of command (ability to plan and execute operations to meet
objectives and to adapt to changing situations.)

Figure 1. Warriors need relevant and timely information from the global Infosphere.

The HDIMI project is conducting research and development in information management
technology to support these operational objectives. This introduction covers:

e HDIMI project background and objectives,
o The technical approach as originally proposed,
e Actual project accomplishments, and

e The organization of the remainder of this report.




Honeywell Technology Center and the University of Minnesota have conducted the HDIMI
project under Rome Laboratory (now Air Force Research Laboratory) sponsorship.

1.1 Project Background and Objectives

The HDIMI project is a successor to the Multimedia Database Management System project
conducted in 1993-1996 under Rome Laboratory sponsorship. That project focused on system
services and tools to support continuous media (audio, video) in time-critical C*I applications.
Significant accomplishments in that project included:

¢ A block-based programming model and graphical tool for dynamic construction of
complete continuous media applications. '

e A multi-resource run-time scheduling component that ensured continued execution of
critical applications when system resources are tight, while allowing others to operate with
reduced quality of service.

¢ A high-performance multimedia file system.

All of these capabilities were implemented in a Solaris-based system called Presto. Presto was
subsequently extended to a distributed environment under a DARPA-sponsored project, High
Performance Network Services [AKPBV96].

The HDIMI project has taken many of the concepts embodied in Presto and generalized them to
address information management requirements implicit in C*I for the Warrior and Joint Vision
2010. Specifically, the HDIMI project objectives are to “investigate, develop, and demonstrate
techniques for meeting I system application requirements:

o A wide variety of information, including conventional data types and continuous media,
stored in a collection of heterogeneous data sources in a distributed environment

o A means for each application to defines its ‘window on the world’ and to specify policies
on how closely the window must be kept in synch with the global Infosphere

e The operation and coexistence of QoS-sensitive C'1 applications and other C'I applications
e Quick and easy prototyping of C*I applications

...within the framework of an overall layered system architecture.”
Significant requirements beyond the capabilities of Presto include:

¢ Support for data types that lack a time dimension, e.g. text, images, and conventional
database structures. (Presto only supported continuous media.)

¢ Ability to define a “window on the world”, i.e. an application- or user-specific Active View
of the global Infosphere. (Presto supported development of stand-alone continuous media
applications. It did not support multiple concurrent accesses to shared databases.)

¢ More general notions of Quality of Service for these views. (Presto supported QoS
measures specific to continuous media.)

o



¢ Distributed multi-resource management. (Presto supported CPU and memory resource

1.2 Technical Approach

management on a single node only.)

.The evolution of the Presto system to accommodate the new requirements is called Sonata. The
Sonata reference architecture (Figure 2) has evolved from Presto to align with the Joint Task
Force Architecture Specification (JTFAS) being developed under DARPA sponsorship [TFS94].
The functional components comprising the architecture fall into five categories:

COTS components are commercially available hardware and software products.

Presto components were built during the Multimedia Database Management System
project and require no significant revision.

Revised Presto components are those that were initially developed in the Multimedia
Database Management System project and need substantial extensions in the HDIMI

project.

New Sonata components are being developed from scratch under the HDIMI project.

Future work, such as C'I applications, can be developed by a follow-on project after
successful execution of the proposed HDIMI project.
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At the outset of the HDIMI project, we proposed to develop the following six major capabilities.
Actual accomplishments are listed in the next subsection.

Active view management—Develop Active View capabilities for the multimedia
infosphere. This component consists of a declarative view specification model and
language, and algorithms that map the views specified in the language to a data-flow-
oriented, function-block-based program for execution.

Block-based programming infrastructure—Supporting the Active View management, this
component consists of a block-based programming interface and view execution
mechanisms. The block-based programming model (and an associated program
development tool) was designed and prototyped in the Multimedia Database Management
System project. Enhance this model with the capabilities of operation flow support and
distributed, location-transparent view definition and execution.

Application development tools—Extend the visual program development tool prototyped in
the Multimedia Database Management System project to support Active View specification
in addition to application construction. Develop a user interface tool to facilitate
construction of user interfaces for different applications, and a program analysis tool.

Multimedia object management—Develop capabilities of heterogeneous data type
management and content-based query for the multimedia infosphere. Prototype this
component using a commercial database management system.

Distributed resource management—This is an extension of the Presto work. Investigate
and develop distributed scheduling techniques on top of POSIX-compliant commercial
operating systems to support the Active View capability.

Application Demonstration—This indicates various demonstration application software
components to be built in the system environment. Develop a set of software components
in the context of a DoD demonstration to illustrate the capabilities of all the system
components described above.

1.3 Accomplishments

We substantially accomplished the HDIMI project objectives, as summarized below. Subsequent
sections of this report provide further details.

1.3.1 Active View Management

We defined Active View services, which involve three major concepts: view, history, and ojbect
synchronization. We have implemented the view and object synchronization concepts in multiple
distributed demonstration applications. The service definitions have proved remarkably robust
over time.

Section 2 describes Active Views more fully.



1.3.2 Block-Based Programming Infrastructure

Presto used a data-flow oriented, block-based programming model and execution environment
for continuous media applications. The Multimedia Database Management System project
implemented this environment for a single Solaris node. Subsequently, Honeywell Technology
Center used and extended the environment under a DARPA-funded project, High Performance
Network Services. This distributed environment was the starting point for the HDIMI project.

.We developed extensions to Presto’s data-flow oriented, block-based programming model to
support operation flows in addition to data flow, and to handle aperiodic flows in addition to
periodic flows. These changes were necessary to implement Active View services, and moved
the range of applications well beyond the continuous media applications that Presto supported.

We replaced Presto’s custom-built distributed execution environment with one based on
CORBA. Specifically, we use Iona’s Orbix product. While this involved replacing major portions

of the Sonata code, we believe it provided the best chance of transferring the technology to
DARPA programs.

We developed a library of reusable view functions that are building blocks for new applications.
These applications can be defined using the application development tools defined below.

The block-based programming model and infrastructure are described further in Section 3.
1.3.3 Application Development Tools

We re-implemented Presto’s Program Development Tool (PDT) in Java. The previous version
depended on a Smalltalk-based “meta-tool” called DoME that, while powerful, required too
much specialized knowledge to use. The Java implementation will permit relatively easy porting
to other platforms in the future.

We developed a User Interface Development Tool (UIDT) to construct application user
interfaces in a “visual” manner consistent with Active Views concepts. The UIDT is integrated
with the PDT, so that the same application can easily be viewed from either perspective.

We have achieved levels of tool/run-time integration and data type support that are significant
advances over Presto:

* In Presto, the PDT was used to define a complete program, from a continuous media source
(e.g. camera or video file), through data transformation functions (blocks) to sink (e.g. file or
display). The program was then run as a unit on one or more Sun workstations.

* In Sonata, programs are built incrementally. Data sources include ObjectStore class extents
and continuous media sources; views can be built on top of them, and on top of previously
defined views. The CORBA name service holds the set of data sources and views available at
any given time. These are visible in the PDT for further view construction. Applications can
be built and executed incrementally, adding new views (blocks) on top of views that are
already active in the run-time environment. These applications run in a distributed
environment, linked via CORBA.




Applications developed using PDT and UIDT can be targeted to multiple execution
environments. In addition to targeting applications to the Sonata run-time system, the tools can
develop applications for the Berkeley Continuous Media Toolkit run-time [SMITH94,
PATEL9S5].

Section 4 covers these application development tools in more detail.
1.3.4 Multimedia Object Management

We evaluated a number of COTS object-oriented and object-relational database management
systems to use as a basis for persistent object management and query. We selected Object Design
Inc.’s ObjectStore server. 4

We developed tools to facilitate creation of Active Views of arbitrary ObjectStore schemas.

We extended Presto’s continuous media file system into a Continuous Media Server (CMS) that
supports concurrent retrieval of multiple media streams by distributed clients.

CMS is integrated with Active Views—The PDT and UIDT can be used to develop applications
that access information from both ObjectStore and CMS.

We demonstrated that Presto’s continuous media file system can perform significantly better
than the standard UNIX file system.

The Continuous Media Server is described further in Section 5. The COTS DBMS evaluation is
reported separately [PS97].

With AFRL concurrence, we decided not to investigate content-based query of multimedia data.
The combination of content-based query and Active View technology is a powerful one for
automating intelligence data analysis. For instance, one could define a view that lists enemy
tanks in a specified geographic region, given a set of raw images. Computing the view requires
executing image analysis algorithms. Our approach had been to integrate existing algorithms in
the Active View framework, rather than to innovate in image analysis. However, we believe that
the current state of the art of image analysis algorithms is insufficient for a compelling
demonstration.

1.3.5 Distributed Resource Management

Resource management was a major focus of the Multimedia Database Management System
project. Presto included a component that performed admission control and adaptive multi-
resource scheduling based on applications’ Quality of Service (QoS) needs. We had planned to
extend this capability to a distributed environment in Sonata. However, in concurrence with
AFRL, we decided not to pursue this objective for several reasons:

e Applying project resources to other objectives (e.g. a more substantial demonstration) was
more valuable.

» With the conversion to a CORBA-based run-time infrastructure, the resource management
architecture would have required a redesign. '



o The resource management concepts developed in the Multimedia Database Management
System project are being extended under a separate project funded under DARPA’s
Quorum program [HIHM+97].

1.3.6 Demonstration Application

We developed several demonstrations in the course of the HDIMI project. We developed
technology-oriented demonstrations of Active Views, the Continuous Media Server, and the
application development tools. All of these technologies have been incorporated into a larger
demonstration that shows how Sonata technologies apply to air combat planning and monitoring.
Section 6 describes this demonstration. Instructions for operating the demonstration software are
documented separately [USER9E].

1.3.7 Other Accomplishments

Honeywell Technology Center and the University of Minnesota have published numerous papers
and filed several patent applications related to Presto and Sonata. Section 9 lists these.

1.4 Report Organization

The remainder of this report is organized as follows. Sections 2 through 6 cover the main Sonata
components at the conceptual level. They introduce the main technical concepts, identify
research issues and solutions, and compare our work to other research. Our conclusions and
recommendations for future work are set forth in Section 7. Section 8 lists documents referenced
in the text. Section 9 lists related publications, proposals, and patent applications. Section 10
documents the design of the Sonata software.
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Section 2
Active Views

2.1 Introduction

Traditionally, information systems have been transaction-oriented: the system maintains a body
of information in a database or other repository, and users query and update that information at
their own initiative. The information system is passive—it doesn’t “speak unless spoken to”. The
trend now is toward more active information systems that inform users or take other actions
when new and relevant information enters the system. Examples include collaborative systems
and monitoring and control systems in a variety of application domains.

Approaches for providing active behavior generally involve some notion of event. CORBA
[OMG], COM [CHAP96], and Java [FLAN97] all support events, and there is a large literature
on active databases. (See [WC96] for a survey.)

Active Views are an integrated set of mechanisms for constructing active information systems.
They are based on a simple, but very specific definition of an event: an event is a complete
description of a change of state in a specific, identified object. The mechanisms—view, history,
and object synchronization—provide a uniform treatment of state, state change, and state history
for arbitrary object types (databases, user interfaces, sensors, etc.) throughout a system.

A view (Figure 3) is an object whose state is a function of the states of one or more other objects,
called source objects. We extend the conventional (database) concept of view in several ways:

e The source objects need not be persistent.

e The source and view objects can be of arbitrary types, not just collections or other system-
provided types.

e The functional relationship O = F(0O,,...,0,) between the view and source objects can be
any computable function, not just a function defined by a system-provided query language.

Because a view is an object, a client application can access or (where meaningful) update the
view’s state using the operations defined by its type. When a source object’s state is updated, the
view’s state changes to maintain the functional relationship. Similarly, updating the view’s state
causes an update to one or more source object states.

A history (Figure 4) is a record of an object’s past and current states, with services for retrieving
the changes between pairs of states. It is an application of the database log concept to arbitrary
objects. The state changes are defined by the object’s type—they are the type-specific operations
that cause a change to the object’s state. The object can be a view; the history then records view’s
state changes, not those of the view’s source objects.
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0=F(O,, ..., 0,)
Figure 3. View

Object synchronization (Figure 5) is the propagation of a source object’s state changes to one or
more target objects. A synchronizer monitors the source object’s history for new state changes,
and propagates them to a set of target objects. The source object can be a view, so that the states
of the target objects are synchronized with the view’s state, not with the states of the view’s
source objects.

These three mechanisms support construction of active information systems in the following
way:

e An object’s history captures its state changes (events) for transmission to interested
recipients via object synchronization. This is information push.

 Alternatively, a client application can access an object’s state via the operations defined by
the object’s type. This is information pull.

A client application may require a computed transformation of the states or state changes of
one or more objects. This can be accomplished by defining a view of those objects, where
the view function performs the required transformation.

Figure 6 shows how Active Views could be used to generate an animated map and maintain
synchronized copies of the map on multiple displays. The state of the animated map is defined by
the following equation:

(1) AnmimatedMap = Overlaylcons(MapCrop(DigitalMap,GPSReceiver),
Generatelcons(RecordSubset(SituationDB,GPSReceiver)))

The map shows enemy flights over a region of interest centered about a warfighter’s current
location. There are three source objects: a digital map of the world, a situation database that has
current locations for all known enemy aircraft, and a GPS receiver that senses the warfighter’s
location. The animated map changes whenever the digital map changes in the region of interest
(e.g. a bridge has been destroyed); aircraft positions change within the region of interest; or the
warfighter moves.
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Figure 6. An Application of Active Views

We have implemented Active Views concepts for two widely divergent applications: military air
operations planning and video capture, storage and display. Other potential applications include
industrial process monitoring and shared collaborative workspaces. Our implementation is based
on OMG’s CORBA, but the approach could be implemented in other object infrastructures such
as Microsoft’s OLE/COM or more specialized systems.

Equation (1) is a declarative statement of an information need. It says nothing about the
mechanics of updating the map in response to changes in the source objects. The declarative
nature of view definitions speeds application development. (For simplicity, the size of the
geographic region to be displayed is assumed to be built into the MapCrop and RecordSubset

functions.) Our implementation provides a library of reusable view functions and a graphical tool
for composing new functions from library elements. The run-time system takes this view
definition and instantiates an efficient, event-driven mechanism for updating the animated map at
run-time in the distributed system. The event-oriented nature of object synchronization provides
rapid propagation of state changes from source objects, through application-specific view
functions, to information consumers.

The remainder of the paper is organized as follows. Section 2.2 presents our model of objects and
types, which forms the basis for Active Views. Sections 2.3 through 2.5 define views, histories,
and object synchronization more precisely, discuss implementation approaches, and compare
these mechanisms individually to similar concepts in the literature. Section 2.6 compares Active
Views as an integrated set of mechanisms to active databases as currently defined in the
literature. Section 2.7 suggests areas for future work.

2.2 Model of Objects and Types

An object is a software entity that interacts with other software entities using a request/response
protocol. In this protocol, a client application (which may itself be an object) sends the object a
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request. Each request elicits a response from the object and may cause a change in the object’s
abstract state [MEYE97]. A request identifies the operation to be performed on an object and
any parameter values for the operation. The response may be a result or an exception indicator.
Requests, responses, and abstract states are mathematical values represented in computer
memory.

An object also has an implementation, which includes an implementation state recorded by one
or more other (implementation) objects, and a procedure that receives requests and generates
responses based on the request and the current states of the implementation objects. It may also
update the states of the implementation objects. There is a close relationship between object
implementations and views; this is discussed further in Section 2.3.3.

The remainder of this section documents our models of object types, equality, creation,
containment, references, and other common object-oriented concepts that Active Views must
deal with in a realistic object-oriented environment. We illustrate the concepts with several
examples.

2.2.1 Types

A type is an assertion about an object’s behavior as viewed by clients. It defines the response that
an object of that type will generate as a result of a particular request, and how the object’s
abstract state will change. For example, a definition of object type Stack defines the behavior of
an object in response to push and pop requests. The type in effect defines a contract between

an object and the applications that use it. CORBA, COM, and other object-oriented system
infrastructures do not address object types or behavior specifications in this sense. Rather, they
deal with object interfaces, which merely identify the names of permissible operations on an
object and the parameters of those operations.

We use the following approach for defining object types. Its relationship to formal specification
languages such as Larch [GH93] and Z [SPIV98] will be explained below. An object type T is
defined by!:

* A state domain S, request domain Q, , and response domain R, . These are arbitrary
mathematical sets.

* A rtransition domain SQ, C S, xQ;, the set of (state, request) pairs for which the type

defines an object’s behavior. A type may not define the response of an object for every
request in every state; the transition domain effectively defines the precondition for each
request.

* A state transition function . : SO, — S, and a response function ?, : SQ, — R, that
define the new state s” and response r for each (s,q9) € SO, . They are infix functions:
s'=sl,gand r=s5?,q.

1 Much of the mathematical notation used here is adopted from Meyer’s Introduction to the Theory of Programming
Languages [MEYE90] This text is very accessible to non-mathematicians (including the authors) but is
unfortunately out of print. Similar notation is defined in [SPIV98).
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e An initial state €, € S, . We assume that all objects of a given type have a specific, known
initial state.

The subscript T will be omitted when the type is understood from context.

This form of type definition is like a finite state transducer [AU72], but here the state, request,
and response domains can be infinite.

A type definition can be parameterized. A parameterized type is denoted T{p,,...,p,]. A

parameter can be a type, a value domain, or a value drawn from a domain. We will define many
parameterized types, including the following example.

2.2.2 Example: Stack

The Stack[X] type defines an infinite-capacity stack with elements drawn from value domain
X.

S=X"
Q ={push(x)| xe X} {pop, isEmpty}
R ={ok,true, false} U X

SQ =(SxQ)—{(), pop)}
e=()

The definition of SQ indicates that the result of a pop request on an empty stack is not defined.
The state transition and response functions are defined as follows:

(X)5ens X, M push(x) = {x,,..., X, %)

(X;5...,x,) ? push(x) = ok

(X(seres X, N POD =(X0eu s X, )
(X;5eesx,)? pOp = X,

(X[sres X, YSEmpty = (X,,...,X,)
(x,,...,x,) YisEmpty = (n = 0)

2.2.3 Behavior for Sequences of Requests

For any state transition and response functions !, and ?,, there are related functions ! and ??;
that show the effect of sequences of requests on an object. The function !!, computes the effect
on an object’s state of sending it a sequence of requests; the function ??, computes the sequence
of responses that result from this sequence of requests:

s ()=s

Sy s G0 = (S {1 G 1) r 4,
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s72,(y=0
S0y q,) = (5% ) | (5% 4) 2% {5004,

Here, | denotes sequence concatenation. These functions are defined on a subset SO of S, xXQ;,

where Q, is the set of sequences of elements of Q.. SQ- represents the legal sequences of
requests that can be sent to an object of type 7 when the object is in a given state s. It can be
defined inductively from SQ, and !, :

SOP = Sx{()}
SO ={(s,{qys--q, )| (5,4,) € SO A (5 4,,{qs>...,q,)) € SO} for n>0
s0; =Jso;

n=0

The difference s’ —, s between two states in S, is the set of paths from s to s, i.e. the set of

elements of Q7 that change the state of an object of type T from s to s”:
(2) s’ = s={l|(s,)€ SQ; As!, | =5}

There may be zero, one, or more than one path from s to s”. State s is reachable from state s
(denoted s =, s")if s'—, s # &. We assume that all elements of S, are reachable from &, .

It is easy to show that for any three states s, s*, and 5",
(3) (S’_T S’) ” (S’_T s)g(sl—r S)

Here, || denotes pairwise concatenation of the elements of its arguments. In other words, the
paths from s to s” include those that pass through s”. It is also easy to see that —, is transitive
and reflexive.

2.2.4 Relationship to Formal Specification Languages

The notation used here to define object types is not intended to replace formal specification
languages such as Larch or Z. Those languages were designed with expressiveness and formal
verification in mind. This notation differs from those languages in at least two ways. First, it
models requests as values. Z, Larch, and similar specification languages model requests as
applications of functions or invocations of procedures or methods. Modeling requests as values
allows us to reason more easily about sequences of requests, as above, and types that can deal
with any form of request, such as a history. On the other hand, the notation is somewhat more
awkward for defining specific types.

Second, our notation can produce only complete type specifications—specifications that
completely determine the behavior of an object of that type [GH93,MEYE97]. A type’s state
transition and response functions define the result of each request completely as a specific new
state and response. If {(g,,...,q,) is the sequence of requests sent to an object of type T since its
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creation, and if 7 defines the behavior for this sequence, i.e. if (&;,(q;,...,4, Ne SQ;, then the
object’s state must be &.!%.(q,.....q,) -

It is not possible to define constraints on the new state or the response while not specifying them
completely. For instance, one might want to define a Set type with a selectOne operation that
returns an arbitrary element of a set object and removes that element from the set. As another
example, one might want to define a stack type with a fixed capacity beyond which push
requests fail, but leave the actual capacity unspecified. Larch and Z can specify such types, but
our notation can’t.

This restriction is actually necessary for our purposes. The definitions of view, history, and object
synchronization require completely specified types: when a request is applied to an object of type
T in a known state, the resulting state must be completely predictable.

In practice, such complete predictability can’t be achieved. Memory and other resource
limitations, hardware faults, and other factors make it impossible to guarantee that an object
meets its type definition at all times. To cover these cases, an object must be able to raise an
implementation exception—a signal that its implementation has failed to meet its type definition.
How such implementation exceptions can be gracefully integrated into Active Views
mechanisms is a subject of future study.

2.2.5 Object Equality

Object synchronization requires a well-defined notion of object equality. But what does it mean
for two objects to be equal? The question only makes sense for two objects whose types have the
same state domain. In this case, the objects are equal if their states are equal. For
synchronization, we impose the further constraint that the two objects be of the same type. This
guarantees that requests sent to one of the objects can be sent to the other object, with the same
effect on their states.

Object-oriented systems make heavy use of references between objects, and so it is common to
define two types of equality, shallow and deep [MEYE97], which differ in their treatment of
references within an object’s state. Two objects are “shallowly” equal if their states are equal. If
their states include references to other objects, those references must be equal, i.e., they must
refer to the same object. Two objects are “deeply” equal if their states are equal and (recursively)
the states of any objects they reference are equal.

Our definition of equality—two objects are equal if their states are equal—is shallow equality.
What if we want to make a copy of a complex web of interrelated objects, and keep the copy
synchronized with the original? This would appear to be impossible with shallow equality, but it
isn’t. One object can be contained by another object, so that the state of the container object
includes the state of the contained object. Therefore, a collection of interrelated objects can be
copied and synchronized if they are in a container object; the states of the original container
object and its copy are kept synchronized according to the shallow equality criterion. See Section
2.2.9 for a discussion of object containment.
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2.2.6 Compression Functions

The type definition for a history (Section 2.4.1) requires a compression function. A compression
function transforms one sequence of requests in s —, s to another, generally shorter sequence.

More formally, a compression function for type T is a function c: SQ; — Q; . that has the
following properties:

V(s,)€ SO sl c(s,1)= sl I
V(s,l)e SQ; c(s,c(s,) = c(s,])

In other words, the compression function generates a sequence of requests that has the same
effect on the current state of the object as the original sequence, and applying compression a
second time to a sequence of requests has no effect.

Here is an example compression function for type Stack[T]. This function is defined recursively,
and either reduces the length of the sequence or leaves the sequence unchanged.

c({x;seees X, 0,(qy - .., push(x), pop,...,q,)) = c({x,5....X,0,{q;5--2q,))
c({X)senes X, 0G5 ISEmpty,...,q,)) = c({x,,. ., X, 0.4G, 50 q,))
c({x,...,x,),{ pop,..., pop, push(x,_, }.q,,...,q,))

\_w——/

m+]times

= c({X)s. s X, ),{ POD; - .., DOD.G}5-..,q,)) 0Sm<n
—_—

m times

otherwise c({x;,...,%,),{q,>---4,)) ={4,5---4,,)

Note that the compression function is sensitive to the state of the stack: a pop request followed
by a push(x) request can be “compressed out” only if x is the stack element that the pop

request removed. It can be shown that this compression function generates a minimum-length
sequence of requests, and that this sequence is unique.

It is possible to define a compression function c¢ that is insensitive to the object’s state,
1e.V(s,l)e SQ; c(s,1) = c’(1) for some stateless compression function c¢’. A stateless

compression function simplifies the implementation of a history. It can be defined using
equivalent sequences of requests. Two sequences of requests [ and !’ are equivalent (for type T')
if their effects on an object of that type are the same regardless of the state of the object:

= ' (Vs,s’eS; les’'—, sel'es’ -, 5)
The two sequences need not cause the same responses from the object. For the Stack[X] type,

(push(x), pop) = ()
(isEmpty) = ()

These equivalences lead to the following stateless compression function ¢”:
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c'{q,5-.., push(x), pop,...,q,)) = c'(q,,-..q,))
c’(q,,....isEmpty,...,q,)) =c'({q,,..-q,))
otherwise ¢'((q,,..-9,)) ={(q,.---9,)

This stateless compression function is clearly not as effective as the state-sensitive compression
function defined above. A problem for future investigation is to identify characteristics of a type
that would allow it to have a stateless compression function that is in some sense as good as any
state-sensitive compression function.

2.2.7 Distance Functions

In practice, two objects can never be perfectly synchronized at all times, since there is some delay
from the time the source object is updated to the time the target object is brought back in
synchronization. Applications can often tolerate some synchronization delay.

They may also tolerate some synchronization inaccuracy: the target need not have exactly the
same state of the source, just a “close enough” state. The notion of accuracy is common in
physical measurements and other numeric values. (How wealthy is Bill Gates? Round to the
nearest billion.)

Delay and accuracy are two measures of quality of service for object synchronization, as
discussed in Section 2.5. Here, we define a general notion of distance function to measure the
difference between the states of two objects.

A distance function for type T is a function d : {(s,s")|s,s'€ S, As =, s’} = R, where R is
the set of real numbers. It has the following properties for all states s, s*, and s”in S, such that
s—; s and 5" —, s":

d(s,s)=0
d(s,s)=0s=3s
d(s,s")<d(s,s")+d(s",s") (the triangle inequality)

This definition of a distance function d differs from the usual definition in two ways. First, d
need not be symmetric, i.e. d(s,s”) need not equal d(s’,s), because it can be “easier” (in some

sense meaningful in the application domain) to change the state of an object of type T from s to
s’ than the reverse. Second, d(s,s”) is not defined for all pairs of states: it need not be defined if

it is impossible to change the object’s state from s to s”,i.e.if s A, s .

A distance function is not part of a type definition; there can be more than one distance function
defined for the same type.

For a stack, the distance between two states could be defined as the minimum number of pop
and push operations required to change the stack from one state to another. This distance
function can be used for any type T :

4)  d(s,s)=min{n|{g,....q,) € s — s}
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It 1s easy to show that d, satisfies the properties of a distance function. In particular, the triangle

inequality follows from Equation (3). In the case of the stack type, d is symmetric, but this is
not true for all types. Equation (5) shows another distance function that could be used with any
type T :

(5) d,(s,s)=(if s=5then0elsel)

This distance function is very coarse because it only says whether two states are the same or
different.

Both (4) and (5) are examples of a broad class of distance functions of the form:
6) d(s,s, 1) =d'(c(s,1))

In other words, the distance between two states s and s” is computed by taking any sequence of
requests ! that would change the state of an object of type T, compressing it, and computing the
distance from the compressed sequence of requests. The distance functions in Equations (4) and

(5) can be expressed as:

d,(s,s!'l) = length(c(s,1))
d,(s,sM) = (if length(c(s,l)) > 0 then1else 0)

where ¢ is a compression function that produces a minimum-length sequence of requests. A
compression function ¢ is said to support a distance function d if d can be expressed as in
Equation (6).

More refined distance functions can be defined for specific object types; examples are given
below.

2.2.8 Examples: Set, Scalar, GeographicLocation

Here are definitions of types Sef[X], Scalar[X], and GeographicLocation .

Type Set[ X] defines an object whose state is a set of values drawn from some domain X . The
state domain of Serf{X] is P(X), the power set (set of all subsets) of X . The definition is trivial
because it relies on commonly-understood mathematical notation.

S =P(X)

Q = {insert(x) | xe X} U {delete(x)| xe€ X} {member(x)|x€ X}
R = {ok, missingElement, true, false}

SO0=8xQ0

E=0

slinsert(x) = s U{x}
s ?insert(x) = ok
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sldelete(x) = s — {x}
s Vdelete(x) = (if x€ s then ok else missingElement)

slmember(x) = s
s Tmember(x) =(x€ s)

The Set[T] type has a number of equivalent request sequences:

(insert(x),delete(x)) = ()

(delete(x),insert(x)) = (insert(x))

(insert(x), insert(y)) = (insert(y), insert(x))
(insert(x),delete(y)) = {(delete(y),insert(x)) for x # y
(delete(x), delete(y)) = {delete(y), delete(x))
(member(x)) = ()

A reasonable distance function is the minimum number of insert and delete requests needed to
change a Set[ X] object from state s to state s’ (Equation (4)).

The type Scalar[X] provides set and get operations for scalar values of any domain X . X

could be the set of integers Z, the set of reals R, the set of character strings, etc. It could also be
a set of “larger” values such as images, for which set and ger operations are sufficient. Assume

that for any domain X there is a distinguished value x, € X that is the initial state for objects of
this type. The type is defined as follows:

S=X

Q = {set(x)| xe X} U{get}
R={ok}uX

SQ=85x0

E=X,

slset(x) =x

s ?set(x) = ok

slget =5
s?get=s

The Scalar[X] type has two equivalent request sequences:

(set(x),set(y)) = (set(y))
(ger) = ()

As a result of these equivalences, the distance functions defined by Equations (4) and (5) are
equivalent, and not very informative. More informative distance functions can be defined for
specific domains. For instance, if D is Z or R, the absolute value d(s,s”) = s'—s | is more

useful. (Here, s"— s denotes subtraction, not state difference as defined in Equation (2)).
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The GeographicLocation type models points on the Earth identified by latitude and longitude.
The GPS sensor in Figure 6 is an example of an object of this type.

S ={(lat,long) | lat,long € R A —90 < lat £90 A —180 < long < 180}

Q = {setPos(lat’,long") | lat’,long’ € R A—90 < lat’ <90 A 180 < long’ <180}
U {move(lat’,long’) | lat’,long’ € R A 90 < lat" < 90 A —180 < long” < 180}
U {getPos}

R = {ok}u{(lat’,long’) |lat’,long"e R A =90 < lat’ <90 A —180 < long’ <180}
SO = S x Q0 ~{((lat,long),move(lat’,long") | lat + lat’ < —90 v lat + lat’ > 90}

(lat,long)!setPos(lat’,long”) = (lat’,long")
(lat,long)?setPos(lat’,long”) = ok

(lat,long)!move(lat’,long”) = (lat +lat’, (long + long") mod 360 —180)
(lat,long) Ymove(lat’,long’) = ok

(lat,long)! getPos = (lat,long)
(lat,long)? getPos = (lat,long)

A reasonable distance function for this type is the great circle distance.

2.2.9 Object Containment, Identifiers, and Creation

Real-world object-oriented applications make heavy use of object containment, identifiers, and
creation. The Active Views mechanisms—yview, history, and synchronization—must work in
these settings. In particular, it must be possible to define a view of a collection of related objects,
create a history of a collection of related objects, and synchronize the states of two such
collections, where client programs may add, remove, and operate on objects in the collection.

Here are the principles of our mode] of object containment, identifiers, and creation:

1. Anobject O (the container) can contain another object O’ (the contained obiject),
meaning that the state of 0’ is part of the state of O, and any change to the state of
O’ is also a change to the state of O.

2. A container can have multiple contained objects. The number of contained objects
may be fixed, determined by the container’s type definition. Alternatively, the
container’s type definition can include one or more requests for creating and
destroying contained objects. All objects are created by sending a request to some
container. (The first object, the container for all other objects in a system, must be
created in some other manner.)

3. A client application sends a request to a contained object indirectly via its container.
The container’s type may provide different forms of request for accessing different
contained objects. Alternatively, the container’s type may provide a request of the
form invoke(objectldentifier,request) , where objectldentifier is a value, meaningful

to the container, that distinguishes among the contained objects and request is a
request defined by the contained object’s type.
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4. Anobject 0" can have, as part of its state, an object identifier for an object O’ thatis
contained by O . This is a reference from 0” to O’. 0" does not contain 0’.

5. Containment is a behavior, not a structural relationship among objects. In other
words, a container, by its behavior in response to requests, provides the appearance
that it contains objects. Views can be constructed that provide different containment
relationships among a set of objects that reference each other.

Note that an object identifier is meaningful to a particular container. The object-oriented
literature abounds with assertions that object identifiers must be globally unique. True global
uniqueness cannot be ensured; there is always some context (perhaps implicit) within which the
uniqueness is ensured, such as an address space, an OODBMS, or a networking environment.
This context acts as the containing object.

There are various kinds of containers—sets, arrays, records, etc.—so there is no single container
object type. However, the following examples illustrate our model.

2.2.10 Example: Record

A record has a fixed number of contained objects that can be of different types. The contained
objects are distinguished by field names rather than object identifiers. Here, we define a type
Record| f,,T,,..., f,,T,] that has fields f,,... f, of types T},...,T, respectively.

S =8 X..xS,

Q= 1<LiJ<n{invoke_ f@)de0o)

R= 1;U;,,RT"

SQ =_1;Lijs,.{ ((8y5--.,8,),invoke _ fi@»| G, q)e SQT,«}

€= (&0 6r)
(S5 85. .8, invoke _ fi(q') = (85,81 G's..8,)
(SpyeeesSpe..8,) Yinvoke _ f(q) = 5,2 ¢

The type has a set of equivalent request sequences that reflect the independence of the record’s
fields, plus equivalent request sequences derived from the underlying types:

(invoke _ f,(q'),invoke _ f(q")) = (invoke _ f (q"),invoke _ fi(g)) fori#j
(q.q" =~r (q",q) = {invoke _ f,(q),invoke _ f,(q")) = (invoke _ f(q"),invoke__ f,(q))

If d,,...,d, are distance functions for the underlying field types, then a reasonable distance
function for the Record|f,,T,,... f,.T,] type is:

d((5)5..2+5,),(8).., 8. )) = Zdi(si,Sf)

1<i<n

Variations on this distance function (root mean square, maximum, weighted sum, etc.) are also
possible.
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2.2.11 Example: SetContainer

An object of type SetContainer[T,I] contains other objects of type T . Identifiers for the
contained objects are drawn from some domain [ . The state domain S for type
SetContainer(T,1] is a partial function from I to the state space S, of T:

S=1-HS,
Initially, the function is completely undefined, meaning that the container is empty:
E=D

There are requests for inserting (creating) a new contained object, deleting of an existing one,
testing for membership, and invoking an operation on an existing contained object.

Q = {insert(i)| i€ I}
U {delete(i)|i€ I}
U {member(i)|ie I}
U{invoke(i,q)|ie I nqe Q,}

R = {ok,missingElement,true, false}
U {response(r)| re R, }

SQ=8xQ

The insert(i) request adds an object with initial state &, to the container and assigns it object

identifier i. If an object with that identifier is already in the container, it is replaced by an object
with this initial state. The overriding union operator U accomplishes this replacement.

slinsert(i) = s\W{(i, &)}
s 2insert(i) = ok

The delete(i) request removes the object with identifier i from the container, if it exists. Here,
dom(s) is the domain of the partial function, which is the set of identifiers of the objects in the
container.

sldelete(i) = (if i€ dom(s) then s —{(i,s(i))} else s)
s ?delete(i) = (if i€ dom(s) then ok else missingElement)

The member(i) request tests whether the container has an object with identifier i.

slmember(i) = s
s ?member(i) = (i € dom(s))

Finally, the invoke(i,q) request sends request ¢ to the contained object with identifier i,

assuming it is in the container. The state of the contained object, which is part of the state of the
container object, changes as specified by the definition of type T . The response is also as
specified by type T , except the response value s(i)?, g from the contained object is wrapped in

the form response(s(i)?, g). This guarantees that the response from the contained object—even
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if it is missingElement —cannot be confused with a response missingElement from the
container. The contained object could return the response missingElement if, for instance,
T = Set[ X].

slinvoke(i,q) = (if i€ dom(s) then s\W{(i,s(@)!; q)} else s)
slinvoke(i,q) = (if i€ dom(s) then response(s(i)?, q) else missingElement)

This type has a number of request equivalences. The first several correspond to the equivalences
for type Set]X]. As usual, = is shorthand for =g, erir.rr-

(insert(i),invoke(i,q,),...,invoke(i,q, ), delete(i)) = )
(delete(i),insert (i)) = (insert(i))
{insert(i),insert(j)) = (insert(j),insert(i))
(insert(i),delete( j)) = (delete( j),insert (i)) for i # j
(delete(i),delete( ))) = (delete( j),delete(i))
{(member(@i)) = ()

The following three equivalences show that invoking an operation on one contained object
doesn’t interfere with inserting, deleting, or operating on another contained object:

(insert(i),invoke(j,q")) = {invoke(j,q’),insert(i)) for i # j
(invoke(i,q),invoke(j,q)) = {invoke(j,q"), invoke(i,q)) for i # j
(invoke(i,q), delete(j)) = (delete( ), invoke(i,q)) for i # j

Finally, for every equivalence (g,,.-.q,) =; {q1»---q.,) for type T , there is a corresponding
equivalence for type SetContainer(T,I]:

(invoke(i,q,),...,invoke(i,q,)) =sucomanercr.1, {VOke(i,q)),....invoke(i, q,,))

Any number of distance functions can be defined for type SetContainer[T,I]. A plausible

distance function d can be constructed using any distance function d’ defined for type T . For
any two states of the container, this distance function sums the number of object insertions
required, the number of object deletions required, and the distances (using d”) between the

original and final states of each object that is in the container in both states:

d(s,s’) = |dom(s") — dom(s) | + | dom(s) — dom(s") |
+ Y min(d'(s(),s' (), 1+ d'(&;,5'(0)))

iedom(s)ndom(s")

(The added complexity in the third term is to account for the possibility it is cheaper to overwrite
an existing object with a new object having the same identifier i, and to bring that new object to
state s'(i), than it is to bring the existing object from state s(i) to state 5(i)).
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2.2.12 Objects, Object Identifiers and References, Object Containment, and Values

It is worth drawing clear distinctions between an object and a value, between an object and an
object identifier or reference, and between an object reference and object containment. These
distinctions are often muddied in the literature but are vital to precise definitions of Active Views
mechanisms.

Consider an object O, of type SetContainer(T,I], an object O, of type Set[I], and an object 0,
of type Set[S,]. O, contains a set of objects, each of whose states is a value that is member of
Sr- 0, is a set of identifiers. These identifiers are references to objects contained in O,. O,
references these objects, but does not contain them. O, is a set of values, each of whichis a
member of S, . It is possible to send a request to a member of O, , but not to a value in O,. More
generally,

e A value is an element of some mathematical set or domain.

* An object is a software construct that has a state. It receives requests, modifies its state, and
returns responses as defined by its type. The request, response and the state of an object are
all values.

* An object identifier is a value, meaningful to a container object, that distinguishes among
contained objects.

* An object reference is a value (specifically, an object identifier for a referenced object) that
is part of the state of a referring object.

The SetContainer[T,I] example illustrates the first four principles of our model of object

containment, identifiers, and creation listed above. The fifth principle, that containment is
behavior, not structure, and that different containment relationships can be constructed using
views, may be surprising. Figure 7 shows how this can be done. Let O be an object of type
SetContainer[T,I] thatis a view O = SubsetContainer(0,,0,), where objects O, and O, are as

defined above. A precise specification of the SubsetContainer view will be given in Section
2.3.2. Basically, the view function SubsetContainer causes O to contain the objects that are
contained by O, and referenced by O, . In other words, if object O’ is contained in O, and is

referenced by O, it is also contained in O . If the state of 0" changes because an invoke request
is sent to O,, the state change is apparent in O also, and vice versa. As object identifiers are
inserted into O, or deleted from it, the set of objects contained by O changes correspondingly.
The net effect is that O contains the objects that O, merely references.

The ability to construct different containment relationships provides significant flexibility for the
Active Views mechanisms, which are based on object states. For instance, a synchronized copy
of O, would track the inseitions and deletions of object references in O,, while a synchronized
copy of O would track insertions, deletions, and updates to the states of the referenced objects
Either outcome might be desirable based on application requirements.
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Update Operations

O:
SetContainer|[T,I]

Y

SubsetContainer
\. )

O;;

SetContainer[T,|] Oy Setll]

O=SubsetContainer(O,, O,)

Figure 7. Constructing a Containment Relationship Using a View

2.2.13 Generating Object Identifiers

There are two general approaches to generating object identifiers: the client provides the
identifier as part of the request that it sends to the container to create the object, or the container
generates the identifier as part of the creation process and returns it to the client in the response.
SetContainer uses the first approach; the latter approach is more typical in object-oriented
systems, which often provide one or more constructors for each object type.

As with any object type, a container type must completely specify the container object’s
behavior. This includes the assignment of object identifiers as new contained objects are created.
If the client provides the identifier in the request, this requirement is automatically fulfilled. If the
container generates the identifier, care must be taken to ensure that the identifier generated is
completely predicable from the container’s type and the sequence of requests sent to the
container so far. Otherwise, the Active Views mechanisms—in particular object
synchronization—will not function properly: a request invoke(objectldentifier, request) , when

sent to both the source and target container objects, may not have the same effect because
objectldentifier doesn’t reference the same contained object in both cases. Most object-oriented

environments—Ilanguage run-time environments, ORBs, and OODBMSs—don’t have
predictable object identifier generation, so these “containers” are not suitable source and target
objects for object synchronization.

It is possible to use some scheme to track corresponding objects in the source and target
containers. During synchronization, the scheme would have to intercept and translate all object
references from the set used by the source container to the set used by the target container. The
scheme would have to be tailored to the specific container object type, and would make
implementation of a type-independent synchronization scheme difficult.
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2.3 Views

The view concept originated in database management systems and has been adopted in other
contexts, such as computer-aided design tools, where multiple perspectives of a body of
information are needed. Views have the following uses:

* Meeting clients’ information needs—Providing client applications and users with the
information they need, but no more, from the mass of accessible data.

* Management of system evolution—Systems, and the objects that implement them, change
over time. A client application or user can create a view of these objects that meets its
information needs. As the system evolves over time, the view insulates the client from
irrelevant changes to the underlying objects, thus simplifying system evolution. This
approach to managing system evolution was recognized long ago in the ANSI/SPARC three-
schema architecture [TK77], but seems to get little attention today.

* Integration of legacy applications and databases—Iegacy applications and databases
typically require and/or provide information in a different format than the one used by a new
system into which they are being integrated. Views can be used to accomplish the desired
transformations.

* Information security—Views have long been used in relational databases to define the
restricted subset of a database that a client may access.

In relational databases, a view is a table whose state is defined using a fixed set of relational
operations over tables and scalar operators over column values. In object oriented database
management systems, as represented by the ODMG standard [CATT97] or experimental systems,
e.g. MultiView [KR98], a view can be defined using a fixed set of operators over collections
(sets, sequences, bags, arrays, etc) and arbitrary computed functions over scalar values.

Our goal here is to have a very general definition of views for object-oriented systems. This
generalization of the view concept allows the benefits of views, listed above, to be realized in a
much broader range of applications. A view is an object O whose state is a function of the states
of source objects O,,...,0, . Informally, the functional relationship is denoted

0=F(0,,...,0,), where F is aview function. More precisely, the functional relationship is

between the states of these objects. The source and view objects can be of arbitrary type. The
view function is also arbitrary: it can perform any kind of information selection, abstraction, or
transformation.

When a client application sends a request to a source object that causes a state change, the view
object’s state changes to maintain the functional relationship O = F(O,,...,0,) . Similarly, when
a client application sends a request to the view object that causes a state change, one or more
source objects’ states change to maintain the functional relationship. Clients cannot perceive
these state changes directly, but only by the responses that the source and view objects return in
response to requests.

A view specification is a definition of a functional relationship between a view object and a set of
source objects, and a definition of how that relationship must be maintained when requests are
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sent to these objects. A view implementation is a procedure that realizes a view specification.
Figure 8 shows a graphical notation for a view specification V and a view implementation P .
The arrows in the view specification indicate the direction of the functional relationship, and the
dotted lines indicate that this is a specification of behavior, not an implementation. The arrows in
the view implementation indicate the direction in which requests are sent: a request sent to view
object O is sent to procedure P, which sends one or more requests to each of the source objects.
O is a virtual view: its state is maintained in its source objects. Materialized views [GM95], in
which a view’s state is maintained in an object separate from the source object, are also possible.
In general, a view specification can be implemented in more than one way.

O:T oT
[
v { P }
Oi Ty |, Ou T, OyTy ...l On Ty

Figure 8. Graphical Representation of a View Specification and a View Implementation

We retain a key characteristic of views: they can be composed. The ability to compose views
means that a user can define complex views out of simpler ones drawn from a view library, as in
Figure 6.

The ability to compose views also means that algebraic properties of the view functions can be
exploited to improve system performance. This has been done extensively in database query
optimization, and is an area for future investigation in this more general context.

Views are essential to our approach for active information systems. In our approach, an event is a
change in state of some object. A user or application defines events of interest by creating a view
whose state changes are those events. Here, the ability to compose views simplifies the task of
defining the events of interest.

We begin with a definition of a view specification and an example. We then discuss various ways
of implementing a view specification in software. The remainder of the section covers further
topics about views, including how views relate to the common concepts of object
implementation and type inheritance.
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2.3.1 View Specifications

A view specification V is a 5-tuple ((T}",...,T)),T",F",1",U"). The superscripts are used to
distinguish elements of view specification V from those of different view specifications, and
will be dropped where there is no ambiguity.

e (T},...,T,) are the source object types.

e T isthe view object type.

* F isthe view function. It has signature S; X...XS; — §;. The view function maps the
state domains of the source objects O,,...,0, to the state domain of the view object O.
The relationship s = F(s,,...,s,) is invariant, guaranteed to hold at all times except when a
source object or the view object has received a request and has not yet replied.

* SI is the source invariant. It is a predicate over S, X...X S, that constrains the combined

states of the source objects. It must be true at all times except during request processing. As
a degenerate case, I may be identically true.

* U is the update constraint. It is a predicate over S; X...xS; XS, X...XS, xQ, that

constrains how the source objects are updated when a client sends a request to the view
object. The update constraint is needed because F' by itself cannot determine the new states
of the source objects unless it is one-one. However, this constraint need not completely
specify how the source objects are updated. An example of a partial specification is given
below.

In some applications, it isn’t meaningful or desirable for clients to update the state of the view
object directly, but only indirectly by sending requests to the source objects. The opposite
situation also occurs, where it isn’t meaningful or desirable for clients to update the states of the
source objects directly, but only indirectly by sending requests to the view object. A view
specification is called forward-updatable if clients may update the source objects directly, and
reverse-updatable if clients may update the view object directly. A view specification can be
forward updatable, reverse updatable, or both.

If the view specification is forward-updatable, each client that updates a source object must
ensure that the source invariant is restored. If the view is reverse-updatable, the view
implementation must ensure that the source invariant is restored following an update to the view
object, and that the update constraint is observed.

Like a type definition, a view specification can be parameterized. This often occurs because the
source and view object types are themselves parameterized, but can also be done to parameterize
the functional relationship between the source and view objects. A parameterized view

specification is denoted V[p,,..., p, 1.

A view specification must meet two conditions to ensure it is consistent with the definitions of
the source and object types. The first condition applies to forward updating: any legal update to a
source object must cause a legal state transition in the view object:
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Vs, €8p,5..u8,€ 87 ,q€ Oy
(7) SI(s;,...,8,) A(5;sq)E SO ASI(81 8,158 G5 8150+ 55,)
= F(8)5..,8,) =7 F(s5oe 008,058,k @58,505--455,)

As stated earlier, a client application that updates a source object is responsible for maintaining
the source invariant. Therefore we need only consider those source updates for which the source
invariant is true both before and after the update occurs.

The second condition applies to reverse updating: any legal update to the view object must be
explainable in terms of legal updates to the source object:

Vs, € Sy sen0sS, € Sy ,q€ O SI(sy5e.,8,) A(F(sy,....58,),9) € SO;
(8) =35 € S;,....5,€ Sy,
Vis, =g S AF (S 08) @ = F(8)es83) ASI(S,s i) AU (S 8,0800 0 87,0)

As stated earlier, we must ensure that these updates restore the source invariant and observe the
update constraint. There may be more than one set of updates to the source objects that meet this
requirement; a view implementation is free to choose any of them.

This definition of view updates allows the source objects to change state even if the request sent
to the view object does not change the view’s state. The example below illustrates this.

2.3.2 Example: SubsetContainer

Here is a formal specification of the SubsetContainer[T,I] view introduced in Section 2.2.12 to
illustrate construction of a container from a set of object references. This view defines a
relationship O = SubsetContainer(0,,0,) between view object O and source objects O, and O,
having the following types: '

TiSubsctConminer[T,l] — SetContainer[T, I]
T2SubxetC1mminer[T,I] = Set[]]

TSubsetContainer[T,I] = SetContainer[T,I]
(For brevity, we will omit the view parameters when they are clear.)

The view function FScomanertl.ll defines the state of the view object O in terms of the state of

the source objects. Based on the types of the source and view objects, the signature of

F SubsetContainer{T ,I] iS:

FSubsetContainer[T,l] . (I -+ ST)XP(I) - (I - ST)

An object is in container O if and only if it is in container O, and a reference to it is in set O,.
The state of each object in container O is the same as the state of the corresponding object in
container O,.In mathematical terms, if s, and s, are the states of O, and O, respectively, then

the state of O is the partial function derived from s, by eliminating elements of the domain that
aren’tin s,:
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F~Sul;xctC(mmincr!T,[](sl , Sz) — {(Z,X) [ (l,.k) € Sl A l.e S2}
For this view, we choose not to impose any further constraints on the source objects’ states via a
source invariant SI***““"! In other words, SIS*“®maerI™-!1 is identically true. So, for
instance, there can be object references in O, for which there are no corresponding objects in

container O, .

The update constraint U > (g s s s, q) is stated as a set of four rules, one for each
form of request g for type SetContainer[T,1]. According to the definition of type
SetContainer[T,I], an insert(i) request causes any existing object with identifier i to be
overwritten by a new object having the same identifier:

g =insert(i)= s, =5, W{({i,&)}
A sy =5, U{i}

For a delete(i) request, we can delete the object from O, , delete the reference from O, , or delete
both. We choose only to delete the reference from O, ; perhaps other applications still have use
for object i in container O;:

g =delete(i)= s| = s,
A sy =8, —{i}

A member(i) request doesn’t affect the state of the view object O, so neither source object must
change state. However, if i is a dangling reference in O, to an object that doesn’t exist in O,, the

view implementation may remove it. This is an example of a partial specification of a view’s
update behavior.

g =member(i) = s, = 5,
A8, —({i}—dom(s))) C s, C s,

Finally, an invoke(i,q) request to the view object O is passed to the source object O, unless

there is no such object in the view. Again, deletion of a dangling reference is permitted but not
required:

9 97 invoke(i,q') = s/ = (if i€ dom(s,) N s, then s, W{(i,s,(i)}, ¢")} else s,)
A8, =({i}—dom(s,))C s, Cs,

Now let’s see show that Equation (7), which deals with forward updates to the view, is satisfied.
This equation requires that any legal update to either source object must cause a legal state
transition in the view object. Let s, s,, and s be the states of the source and view objects

before the request is sent, and 57, s,, and 5" be the states after the request. The proof strategy is
to show that s"= s, . . (d1....4,) , for some sequence of requests {g,,...q,) applied to the
view object, by (1) expressing s” in terms of s, and s, using the view function definition, (2)
expressing s; and s, in terms of s, and s, using the type definitions for O, and O,, and (3)
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expressing sl cuamer (G15--g,,) in terms of s, and s, using the view function definition and the
type definition of O.

The most complex case is an invoke(i,q’) request sent to O, . There are three subcases.

Subcase I: i€ dom(s;) ni€ s,.In this case, O changes state as if an invoke(i,q) request were
sent to it:

"={U.0)| (G, x)E s A jE 53}
={(.0|(J,0€ 5 V{05 )} A jE 5,)
={(L:0[(, e s A j=)V (0 =050 ) A jE s,
={UDR)es A jes, A j2DV((),%)=050)9) A JE 5,)}
={UD (e s A e s A j#DV(),X) =50 q)}
=0 [((x)esA j=v(j,x)=(i,50):4)}
=sW{(i,s();q))

= S”SetComainer <inVOke(i’ q/)>
Subcase 2. i€ dom(s;) Ai¢ s,. In this case, O, changes state but O does not:

s ={(, )|, x)€ 5| A jE 53}

={0(0€ 5 W{{E 5O )} A jE 5,)

={UD(G0E s Aj#EDV (,x)= (0,50 gD A JE s,)
={UGR)Es A jEs, A j£DV((J,X)=050),9) A JE 5,)}
={(:0)|(G. )€ 5 A JE 53}

= S!!SetContainer< >
Subcase 3: i€ dom(s,). In this case, neither O, nor O changes state. The proof is trivial.
Proofs for other requests to O, and O, are similar.

Finally, let’s show that Equation (8), which deals with reverse updating, is satisfied. This
equation requires that any legal update to the view object must be explainable in terms of legal
updates to the source objects that preserve the source invariant and observe the update constraint.
The proof strategy is to (1) consider different forms of request to the view object one at a time,
(2) for a particular request form, identify a sequence of corresponding requests to each of the
source objects, (3) show that these requests maintain the source invariant and observe the view
update invariant, and (4) verify that the new source object states are consistent with the new view
object state as defined by the view object’s state transition function.

As an example, consider the request invoke(i,q") sent to O . Again, there are subcases depending
on the value of i. The most important subcase is i€ dom(s,) Ai € s,. In this case, the sequences
of requests for O, and O, are (invoke(i,q’)) and () respectively, so that:
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’ . .7 . . ’
SI = sl !!Schnnmim'r(T) <UlV0k€(l,q )> = S] w { (l’sl (I)Tq )}

4
85 =S50 () =5,
The source invariant SI><*"" 11 is maintained, since it is identically true. The update
constraint (9) is also clearly satisfied. The proofs are similar for the remaining subcases for
request invoke(i,q’), and for the other request forms that can be sent to view object O.

2.3.3 View Implementations and Object Implementations

As stated earlier, a view implementation is a software realization of a view specification. It is a
procedure that receives requests from clients and generates responses according to the view
object’s type. Figure 9 shows how a view implementation operates. Between receiving the
request and sending the response, the view implementation can send requests to the source
objects O,,...,0, and use the source objects’ responses to compute its response to the client. It

can use temporary storage while computing its response, but cannot maintain state between
requests except in its source objects.

1senbai
asuodsal

View
Implementation

F Y F A F 3

A A A N

0, o,

Figure 9. View Implementation Operation

The view implementation is constrained to interact with the source objects using only the
requests defined by the source objects’ types. It cannot access the source objects’ states directly.
It is further constrained to obey the view specification’s update constraint.

Here is a sketch of an implementation of the SubsetContainer[T,1] view specification.

e Inresponse to an insert(i) request, the implementation sends an inserz(i) request to both
source objects as required by the update constraint, and returns the response ok .

o In response to a delete(i) request, it sends member(i) requests to both source objects to
determine whether i€ dom(s,) N s, . If not, its response is missingElement as required by
the view object’s type; otherwise the response is ok . In either case, it sends a delete(i)
request to O, as required by the update constraint.
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e Inresponse to a member(i) request, it determines whether i€ dom(s,) M s, as above and
returns the appropriate response. If i is a dangling reference in 0,, it sends O, a delete(i)
request as allowed by the update constraint.

e In response to an invoke(i,q) request, it again determines whether 7€ dom(s,) N s, , and if
so sends an invoke(i,q) request to O, and returns O,’s response to the client. Otherwise, it
sends a missingElement response to the client.

A view implementation looks suspiciously like the conventional notion of object class or object
implementation. This is true: an object implementation is a form of view implementation, where
the view object type is the object type being implemented, the view implementation is the class
code, and the source objects hold the implementation state. In this context, the view function
serves as the abstraction function and the source invariant serves as the implementation invariant
[MEYE97]. The view specification is normally not forward updatable, since direct updates to the
implementation state would violate encapsulation.

2.3.4 Indirect View Implementations and Inheritance

The implementation of the SubsetContainer[T,I] view specification sketched above is a direct

implementation: it is a single procedure that realizes the required behavior of the view object by
interactions with the source objects.

Sometimes a view specification has no direct implementation, due to the constraints that the
source objects’ types impose on access to their states. Consider the forward-updatable view
specification N = SizeOf (S), where view object N has type Scalar[N] (a non-negative integer
object) and source object S has type Set[X] for some domain X . When a client sends a get

request to N , the response is the size of . How can this view specification be implemented?
The Set{X] type provides no means by which a client could determine the elements of the set,

except by exhaustively sending S a member(x) request for each element of the domain X and

count the number of frue responses. If X is infinite, this is impossible; for man common finite
domains (integers, floats, etc.) it is unacceptably inefficient.

In such cases, it is legitimate to revise the type specifications of the source objects to provide
better access to the source objects’ states. Type specifications should be refined where
appropriate to meet legitimate application needs. Another approach is to use an indirect view
implementation, as shown in Figure 10. In this approach, we assume that the set § is
implemented as a linked list. This implementation has two implementation objects: ListHead ,
which holds a reference to the first element of the list, and ListElements , which is a container of
list elements. The SetAsList procedure implements the set abstraction in the usual way. The
integer object N is a view of the same two implementation objects, using a different procedure
ListTraverse to count the number of elements in the list.

As another example, relational DBMSs use indirect view implementations to enforce the
functional relationship between a view (derived) table and the base tables from which it is
defined. For instance, view V might be defined as the join of two base tables, V=7, >< T,.In
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fact, T, and T, are direct views of the underlying physical storage structures that implement
them, and the DBMS computes V from these structures as well.

N:
Scalar[N]

P— , Slzeof .4 .................. S: Set[X]

Y. Y

[ ListTraverse J : [ SetAsList J

Y \J

ListHead: ListElements:
Scalar[l] SetContainer[Record[val,Scalar[X],next,|],1]

Figure 10. Indirect Implementation of SizeOf View

More generally, an indirect view implementation enforces a view specification between a view
object O and source objects O,,...,0, by implementing each of these objects as direct views of

some other objects O),...,0,,.

m

Indirect views are closely related to the usual notion of implementation inheritance. With
implementation inheritance, an object can have more than one type: a most specific type and one
or more supertypes that are abstractions of this most specific type. The apparent state of the
object, and the methods available to manipulate that state, depend on the type under which the
object is being viewed. The state of the object under some supertype S is a function of the state
of the object under the most specific type T . This function has also been called an abstraction
function [LW94].

As stated earlier, two objects can be synchronized only if they have the same type. If an ojbect
can have more than one type, the definition of synchronization becomes more difficult. We
propose instead the following approach:

e Each object has exactly one type. The object’s type defines its state space, its initial state,
and how its state changes in response to requests, as described in Section 2.2.1.

e Anobject O of type T, when treated as an object of some supertype S through
polymorphic assignment, is really a different object O’. Both are (direct) views of their
implementation objects: O = F;(0,,--,0,) and O’ = F(0,,---,0,). O’ is an indirect

view of O; the indirect view function is the abstraction function. The polymorphic
assignment generates a reference to O from a reference to O.

In other words, implementation inheritance is a specific form of indirect view implementation.
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2.4 Histories

A history is a record of an object’s past and current states, with services for retrieving the
changes between pairs of states. It is an application of the database log concept [GR93] to
arbitrary objects. Examples of histories include a video clip (a history of an image), a sequence of
timestamped sensor readings, an aircraft trajectory (history of position) and the output of a
chemical process simulation. As with views, our goal is to have a very general definition of
histories for object-oriented systems—one that allows various implementation approaches,
including very efficient special-purpose implementations.

There are two common forms of history abstractions:

e Value-based: a sequence of (time, state value) pairs. This form of history provides services
to determine an object’s state as of specified time and (possibly) the sequence of object
states recorded for a specified time interval. This form is common in process data loggers,
which record timestamped sensor values. Most research in temporal databases also adopts a
value-based model of history, in which a query is evaluated as of a specified time
[TANS93].

e Change-based: a sequence of (time, state change) pairs. This form of history provides
services to store and retrieve the sequence of changes to an object’s state within a specified
time interval. Database logs are of this form.

We adopt a change-based history abstraction, where the state changes are captured by the
requests sent to the object. Gray and Reuter term this logical logging [GR93]. There are several
reasons for this choice: ‘

e Value-based history is a special case of change-based history, where each change is a
complete replacement of the object’s state. This is common for small objects of type
Scalar[ X ].

¢ For large objects, manipulating state changes is more efficient than manipulating states. It
would be impractical to record the entire state of a database every time the database is
updated.

e Many object types define no implementation-independent representation for values in their
state domains. For example, the Stack[X] object has push(x) and pop requests for
incrementally modifying the object’s state, but no request for reading/writing the object’s
complete state. On the other hand, each object type T defines its possible state changes: the
request domain Q.

Any object O can have a history. Section 2.4.1 defines a type History[T,H ,c] for any object
type T . An object’s base history records every change of state as it occurs in the object. Section
2.4.2 shows how O’s base history can be updated by making it the source object of a view,
where O is the view object. Section 2.4.3 shows how other histories can be defined as views of
this base history. One purpose for doing this is to achieve varying levels of quality of service in
object synchronization. Section 2.4.4 defines histories of views and discusses how they can be
implemented. '
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2.4.1 History Type Definition

If O’stypeis T, then any history of O is of type History[T,H ,c], where H is a domain of

state identifiers and ¢: SQ; — Q; is a compression function. State identifiers are used to label

and select states in the history. There are many possible choices of domains for state identifiers,
depending on the application. Integers, timestamps, multi-level version numbers, and transaction
identifiers are common state identifiers. There must be a total order < y defined on H , so that

the relative position of two states in an object’s history can be determined by comparing their
state identifiers. There must also be a minimum element h, € H and a distance function

d, :HxH — R to measure the difference between two state identifiers.

The type definition for History[T,H ,c] is as follows. At any time, the state of a history is of the
form (((h,1,),...(h,,1,),1), where h,,...,h are state identifiers in strictly increasing order, and
l,....I, and I are sequences of requests drawn from Q, . The history represents a sequence of

past states s,...,s, and the current state s of an object of type T in the following way:

(10) s, =¢;
s;=s5,,01 for1<i<n
s=s,1

In other words, the sequence of requests /,, when applied to an object of type T, moves the
object’s state from s,_, to s,. Formally, the state space for type History[T,H,c] is:

S=(HxXQ;) X0

The initial state of a history has an empty sequence of past states, and the current state is the
initial state of type T :

e=(()H{)

The request and response domains are:

Q = {record(q’) |4’ € O;}
U{append(h)| he H}

U{ first}

U{last}

U {succ(h)|he H}
U{get(h)|he H)
U{getTail}

R = {ok,badldentifier, pastEnd} U H U Q;

Any request is possible in any state: SQ = §x Q. Request record(q’) appends a request to the
history, and compresses the sequence of requests recorded since the last identified state.

36



(1)), (R W,Direcord(q’) = (((hy,1),...,(h, 1)), c(s,,1 XCR)),
Ky, L), s (1 ), 1) 2 record(q') = ok

Here, s, is shorthand for an expression over the history’s state, as defined in Equation (10).

Any compression function ¢ for type T can be used to process record(q’) requests, including
the “null” compression function ¢(s,!) =1. If a stateless compression function is used, so that
c(s,,11{gY) =c'(|{q")), the implementation can be simplified. The choice of compression

function affects the history’s state transitions, and therefore is a parameter of the type definition.
Like all type definitions, History[T,H ,c] completely specifies the behavior of an object of this

type. This is essential to Active Views mechanisms, as explained in Section 2.2.4.

Request append(h) makes an identified state h from the current state of object O. The state
identifier & must be greater than the state identifiers already in the history:

). s (B, L)), Dtappend(h) = (if h, <, h
then (((ly,1),...(h,,1),(B,01)),())
;3186 (AN

{(h, L), (R, L)), D ?append(h) = (f h, <,, h then ok else badldentifier)

Requests first, last, succ(h), get(h), and getTail are for navigating the sequence of state

identifiers and accessing the requests. None of these modify the state of the history. The
responses to these requests are as follows:

((h, L), ... (R, 1)), 1) ? first = (if n>0then h, else pastEnd)

{(h,1)s. .5 (R, 1)), 1) ast = (if n>0then h, else pastEnd)

(1), ... By 10D 2 suce(h) = (if 3k h=h, A1<k <nthen h,,, else badldentifier)
«(h,0),. .., (R, L)1) get(h) = (if 3k h=h, A1Sk <nthenl, else badldentifier)
(1), s (B, 1,00, 1) getTail =1

2.4.2 An Object as a View of its History

Suppose an object O of type T has a base history object BHO of type History[T,H,c]. BHOs

state must always reflect O’s current state. This can be accomplished by a view relationship
O = OHV[T,H)(BHO) , where OHV[T,H] is the object history view. This view has parameters

T and H , but we will omit these for brevity. The choice of compression function ¢ does not
affect the view definition."

This view is both forward and reverse updatable. Any request g sent to O causes a request
record(q) to be sent to BHO . Requests of form append(h), delete(h), first, last, succ(h),
get(h), and getTail are sent directly to BHO by other clients. As will be seen, none of these
requests change the state of BHO in a way that changes the state of O.
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The view function F°" :(H xQ;) xQ; — S, is defined as follows:

Fo ((((h]’ll)""’(hn’ln)>’l)) = ST!!T (11 I"'Iln |l)

This just reflects the fact that the state of the object O is determined by the sequence of
operations (g,,...,q,,) performed on it since its creation. The sequence [, |...|l, |] is a

compressed version of the original sequence, but is guaranteed to have result in the same state.

The source invariant SI°"" and the view update constraint U °”" are identically true; the view

function F" and the source and view types provide sufficient constraints on the view’s
behavior.

Figure 11 shows one way to implement the OHV[T, H] view specification. Object 0 is
implemented as a wrapper for two objects: O’, another object of the same type, and the history
object BHO . For each request g sent to O, the HistoryWrapper procedure does two things: (1)

it sends the same request to the object O and returns the response from O to its client and (2) it
sends request record(g) to BHO . The implementation of object O’ is a “real” implementation

of type T . Note that the HistoryWrapper procedure implements two view specifications:
OHVI[T,H] between view object O and source object BHO , and Identity[T] (the identity

function) between view object O and source object O’. If we assume that no clients except the
HistoryWrapper procedure send a record(q) request to BHO , then the state of O will always

equal the state of O that is predicted by the view relationship O = OHV[T,H](BHO) .

........ O:T v
Identity[T] ( HistoryWrapper ] . OHV[TH]
v :: /\ | f
. BHO: /
o:T History[T Hc]

Figure 11. A Wrapper Implementation of a History

2.4.3 Views of Histories and Information Quality of Service

A history is an object, so views can be defined on it. One particular kind of view is useful for
object synchronization: an information quality of service view. Synchronization works by
sending the requests in a history of the source object to one or more target objects. In many cases,
perfect synchronization is not required: the target objects’ states can lag the source object by
some amount of “time”, where time is measured using state identifiers. Also, the target objects
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can differ somewhat from the source object’s state, where the difference is measured using a
distance function as defined in Section 2.2.6. In general, higher-fidelity synchronization requires
more system resources; it should be possible to trade off synchronization fidelity and resource
requirements.

The information quality of service view IQoS[T,H,c,d,,,Ah,d,,As] defines a view relationship
VHO = IQoS(SHO) between a view history object VHO and a source history object SHO , both
of type History[T,H ,c]. Besides the parameters 7', H , and ¢ taken from the source and view
object types, the IQoS view has four additional parameters: a lag Ah, a distance function d
over state identifiers to measure lag, an accuracy As, and a distance function d, over states to

measure accuracy. VHO is derived from SHO by omitting those past states that are not
sufficiently different (in terms of Ah and As ) from earlier states that have been included in
VHO .

F™% has signature F'%° :(HXx Q) xQy — (HXQ;) XQ; . Any state of the source object

SHO is of the form ss = ({(sh,,sL,),...,(sh,,sl )),sl) ; the corresponding state vs = F?** (ss) is of
the form vs = ({(vh;,V1,),...,(vh,, VI )),vI) . The state identifiers vh,...,vh, in VHO are a
subsequence of the state identifiers sh,,...,sh, in SHO . Exactly which identifiers are in this
subsequence is determined by the included function: the value of included (i) is true if sh, is
included in vh,...,vh, . The function prev(i) returns the index within sh,,...,sh, of the last
element prior to sk, that is included in vh,,...,vh

m*

ncluded i) true i=0
) = Ay (5P S1) > ARV dp (55, 00085) > As 1<i<n
where ss; = &% (s |...| sL)

prev(i) = max{k |0 < k <i A included (k)}

From the included function, we can compute the length m of the sequence vh,...,vh, and, for
any index j in that sequence, the index index(j) of the same element within sh,,...,sh,.

m= |{i |1<i < n Aincluded (i) }l

0 =0
index(H=4 . !
min{i|i > index(j —1) Aincluded (i)} 1< j<m

Finally, we can construct the view’s state vs = (((vh,,vl,),...,(vh,, , vl )),vl) . The sequence of
requests v, is generated by compressing the sequences of requests that follow the previous state

identifier sh in SHO .

prev(index( j))
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(A1) Vi =sh 4. 1Sj<m
VZj = c(ssprcv(index(j)) ’ (Slpre\'(indcx(j))ﬂ | e I SIinrlu.\'(j) )) 1 < .] S m
vl = C(ssindcx(m) ’ (Slindcx(m)ﬂ I tee I Sln I Sl))

Depending on the values chosen for Ak and As, this compression can lead to a considerable
reduction in the number of requests in VHO compared to SHO , and hence reduced
synchronization resource requirements.

This view specification can be implemented in a number of ways. Figure 12 shows one way. It
requires the compression function ¢ to support the distance function d,, , i.e. there must be a
function d;. : Q; — R such that V(s,]) e SQ; d, (s,8W, 1) =d;(c(s,1)). (See Section 2.2.7.) The
technique used here is similar to the one shown in Figure 11 to implement a history: a wrapper
procedure IQoSWrapper receives requests to a source history object SHO , and forwards them
to a “real” implementation SHO” of the base history object. It also forwards the requests to a
separate history object VHO , except that before forwarding an append(h) request, it sends a
last request and a getTail request to VHO to obtain vk, and vl from the state of the view. It

computes d,, (vh, ,h) and d,(vs, ,vs, 'vl), which equals d; (vl) since VI is already

compressed. If either distance exceeds its respective bound Ah or As, the IQoSWrapper
procedure sends the append(h) request to VHO ; otherwise it does not. The result is that the

state of VHO includes a subset of the state identifiers in SHO , and the same requests as in
SHO , except they are further compressed.

SHO:
History[T,H,c]
Identity[History[T,H,c]] [ IQoSWrapper J [QoS[T,H,c,d,,Ah,d;, As]
'y : -
SHO’: VHO:
History[T,H,c] History[T,H,c]

Figure 12. An Implementation of the IQoS View Specification

Other kinds of view of histories are possible. For instance, process historians are specialized data
servers that record timestamped sequences of scalar values, typically the outputs of sensors that
measure temperature, pressure, flow, etc. These historians can provide clients applications both
raw sequences of recorded values and sequences generated by interpolation, filtering, and other
functions applied to the raw sequences. Such computed sequences are really views of the
underlying raw sequences.
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2.4.4 Histories of Views

Since a view is an object, a view can have a history, too. In an active information system, a
history of a view is needed when a client application wants to be informed (via object
synchronization) of changes in the state of the view rather than of the underlying source objects.
The view function may perform significant information abstraction or transformation to meet the
client application’s needs.

Figure 13 shows the view relationships among a view object O, its source objects O,,...,0,, and
their respective histories HO and HO,,...,HO, . The relationship between O and O,,...,0, is
defined by an arbitrary view specification V . The relationship OHV[T,H] between O and HO,

and the similar relationships between the source objects and their histories, were defined earlier.
The relationship between HO and HO,,...,HO, is defined by a view specification VHV . This

relationship requires that each of the histories use the same state identifier domain H .

...................... ¥ \
P '~‘,"§
O, T, O, T, O:T
A F f Y
OHV[T1,H] OHV[T1,H] OHV[T,H]
’-...n......--u‘-i.uu-"-.uu-' 'n-uu---u---]i-"u----u....' '-.......n-----]i ----------------
HO,: HO,;: HO:
History[T,,H,c4] res Hlstory[Tn,H Cpl History[T,H,c]
...................... 7
............... £ VHV ¥

Figure 13. The View Relationships Among a View Object, Its Source Objects, and Their Histories

The view VHV is specified as follows. There is a non-trivial source invariant I"*" : the sequence
of state identifiers that appear in each source object’s history must always be the same. In other
words, the states sho,,...,sho, of the source histories HO,,..., HO, can be written:

(12)  sho, = (i, L0),..., (B 19N, 1)
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This requirement is imposed because the past states of the view object O, as represented in its
history HO , can only be determined for those state identifiers that appear in every source
object’s history. (If the available histories of the source objects don’t have identical sequences of
state identifiers, it may be possible to construct views of those histories, as discussed earlier, to
meet this requirement. The views could omit state identifiers, interpolate between recorded
states, etc., to meet the requirement.)

Figure 13 is somewhat misleading in that it implies that there is a single view specification
VHV —in particular a single view function F**" —that is implied by the other relationships
among the various objects. In fact, there can be more than one definition of F*7" that is
consistent with the other relationships. The flexibility in the definition of F"*" arises from the
lack of information about the ordering of requests sent to the different source objects O,,...,0

i

and recorded in their histories HO,,...,HO, . The common sequence of state identifiers imposes
some degree of order: if state identifiers h, and h, appear in both sho, and sho, (the states of
history objects HO, and HO,) and if h, <, h,, then the sequences of requests I3’ and I\ were
sentto O, and O,, respectively, strictly before the sequences of requests I’ and I\”’ were sent to
those objects. However, we don’t know how requests in l!‘f ) were interleaved in time with

requests in . This lack of time ordering information is typical of asynchronous computin
q P g Yp Y p g

systems [BM93]. Therefore we don’t know the sequence of state transitions that the view object
O underwent between state identifiers , , and k, . If the compression function ¢ produces the

same result for any of the possible sequences of state transitions in the view object O, the value
of I, is completely determined; otherwise it is not. Therefore we will present constraints on the

definition of F"" rather than a complete definition.
The view function F"" has the following signature:
F™ (HX Q) XQr)%..x(HXQr )" x0r ) = (HX Q) X Q)

The sequence of state identifiers in HO must be the same as those in the source objects’
histories. So, if the states sho,,...,sho, of the source histories HO,,...,HO, are as written in

Equation (12), then the state sho of the view history HO can be written as:
sho = (((h,1),...,(h,,1. ), 1)

Finally, the sequences of requests in sho must guarantee that the states of the source and view
histories obey the view function F" at each recorded point in history:

(13) WG] L) = F (et 4P 1), e e ] 17) 1S p<m
el L D =F e b @0 | 19 1), e @7 ]| 1 1))
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If a request is sent directly to HO , equations (12) and (13) and the type definitions T,,...,T,
impose significant constraints on the behavior of the view in updating the source histories
HO,,...,HO, . No further source update constraint is necessary—U""" is identically true.

There are many ways of implementing a history of a view. The approach chosen depends on
specific properties of the source and object types and how the view V is implemented. Figure 14
shows a fairly general approach that assumes that view specification V is implemented as a
virtual view, i.e. view object O ’s state is computed from the states of source objects O,,...,0
The number of objects and procedures may appear daunting, but only the shaded objects are

“real”, materialized objects; the rest are views of those objects implemented through the
procedures shown in the figure. Also, many of the procedures are fairly trivial.

n*

O, T, O, T, Oo:T
—_— —_— ,_v___w
Derivative, s Derivative,, P
— —
O T, .. O, T,
History History
Wrapper; nee Wrapper,
HO': HO' . HOW

O T,

o T,

History[TyH,c,]| ==» History[T,,H,c,]| | History[T,H,c]

History History History
Synch; Synch,
A F F N
HO,: HO,: HO:
History[T,,H,c{]] ==* History[T,,H,c.]| | History[T,H,c]

Figure 14. An Implementation of a History of a View

Starting from the top and bottom of the figure, objects O,,...,0,, HO,,...,HO,, O, and HO are

the source objects, their histories, the view object, and its history that are presented to external
clients. Procedures Derivative,,...,Derivative, and P are the keys to the view implementation.
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The purpose of Derivative; is to intercept a request g sent to O, and to compute the requests

that must be added to H (via record requests) to reflect the corresponding change in state of the
view object O. It can access, but not modify, the states of the other source objects in computing
this change. The procedure P performs a similar function by intercepting requests sent to O,
computing the corresponding requests that must be sent to the source objects, and recording the
request in HO . The purpose of HistoryWrapper, is to intercept requests from those procedures

to the source objects, to send them to the “real” implementations of the source objects, and to
record them in the “real” implementations of the source histories. The purpose of the
HistorySynch procedures is to guarantee that the source and view histories have the same

sequence of state identifiers. Whenever an external client sends an append(h) request to one of
these histories, the HistorySynch procedure intercepts the request and forwards it to all of the
histories.

Simpler implementations of a history of a view are possible for specific source object types and
views. For instance, consider a source object SO of type Record| f,,T,,..., f,,T,] and a view

object VO of type T;, where VO = Project, [SO]. The view function Project, maps the state

(8)5...58,) of SO tostate s; of VO . A history of VO can be implemented as a “virtual” view of
the history of SO, rather than as a materialized view as in Figure 14

2.5 Object Synchronization

Object synchronization is the final piece in the Active Views puzzle, and with all that has come
before it, it is easy to define. The purpose of object synchronization is to propagate state changes
from a source object to one or more target objects of the same type, so that their states are
synchronized. Object synchronization is similar to the usual notion of event services such as
those defined for CORBA [OMG], COM [CHAPY6], and Java [FLAN97], but here we ascribe a
more specific meaning to the concept of event: an event is a complete description of a change of
state in a specific, identified object. The state changes that an object can undergo are the requests
defined by the object’s type. The CORBA, COM, and Java event services allow various types of
events to be defined. These event types can have parameters to carry instance-specific
information. However, there is no requirement that an event identify a specific object as its
source, or that the event be a complete description of a state change.

A commonly-used event-oriented pattern is for a source object to announce to subscribers .
(perhaps by a method invocation) that its state has changed, but not exactly how. Each subscriber
must then query the source object to determine the new state. Gamma et al. [GHIV95] call this
the observer pattern. Object synchronization is a different, more efficient way of achieving the
same end: the event carries the information about how the state changed, so that the subscriber
need not query the source further. In many cases, the event encodes the difference between the
source’s old and new states. The recipient may use this information for various purposes, e.g. to
highlight the changes on a display. In the observer pattern, the subscriber must explicitly
compare the source’s old state (which it stores locally) to the new state it gets from the source.

Object synchronization differs from the usual notion of event services in another way. Event
services allow a client application to subscribe to a stream of events that emanate from some
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object. The subscriber receives those events that occur after the subscription starts. Even if the
events carry a complete description of the source object’s state change, this information is
insufficient to allow the recipient to track the source object’s state, since the recipient doesn’t
know the state of the source object at the time the subscription took effect. Object
synchronization solves this problem by synchronizing the recipient’s state to the current state of
the source object before sending it new events.

Object synchronization uses a history of the source object as its source of state changes. A
synchronizer procedure (Figure 15) monitors the history for new state identifiers and applies the
corresponding sequences of requests to the target objects. It also maintains a record of the
synchronization status of the target objects. This synchronization can occur either automatically
or at the explicit request of a client application. As stated earlier, the source and target objects
must be of the same type. Since our type definitions are complete—they completely define the

behavior of the object in response to requests—the target objects are guaranteed to have the same
state as the source object.

The synchronizer procedure is an implementation of the Synchronizer view specification. The

- view object is an object of type SynchronizationControl that, as the name suggests, provides
requests for controlling the synchronization. Unlike most of the views specified so far,
Synchronizer is more notable for the state changes that occur in the view’s source objects when
a request sent to the view object, than for the state of the view object itself. The
SynchronizationControl type definition and the Synchronizer view specification are given
below.

SC:
Source: T SynchronizationControl[H,[]
OHV : Synchronizer
[T.H ¢ : Synchronizer[T,H]I] i Procedure

.............

.....

SourceHistory:
History[T,H,c]

Targets:
SetContainer(T,l]

SynchronizationStatus:
SetContainer[Record[active, Boolean, targetStateld, H}, I

Figure 15. Object Synchronization Objects, View Specification, and View Implementation

Figure 16 shows an example of object synchronization: aperiodic updates to a tabular display
window based on changes to a database table. Both the database table and the window are treated
as objects of type Table that accept insert, update and delete operations. Therefore the updates
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that database clients apply to the database table can be directly applied to the display to maintain
synchronization.

© Synchronizer Display Window

History

Database Table

Figure 16. Example of Object Synchronization
2.5.1 SynchronizationControl Type Definition

The SynchronizationControl[H,I] type has two parameters: H , the domain of state identifiers

used in the source object’s history, and I, the domain of object identifiers used by the container
object in which all synchronization target objects are contained.

The state domain S of type SynchronizationControl[H,I] records the sequence of state
identifiers in the source object’s history, and for each target object, a boolean value that is true if
synchronization is currently active for that object (otherwise it is paused) and a state identifier
indicating the current state of the object. Initially, the source object’s history is empty and there
are no target objects:

S =H’" x(I - (Booleanx H))
e=((){H

The SynchronizationControl[H,I] type provides several forms of request. They are all
permissible in any state of the object.

O = {append(h)|he H}
U{insert(i)|ie I}
U {delete(i) |i€ I}
U {synch(i)|ie I}
U { pause(i)|i€ I}
U {synchToState(i,h)|ie I Ahe H}
U {rick)
SO =850
R = {ok,badObjectldentifier,badStateldentifier}
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The append(h) request adds a new state identifier to the history. A client application can send
this request to an object of type SynchronizationControl , or directly to the underlying history
object.

(hy,... k), synchStatus)append(h) = (if h, <, h
then ((h,,...,h,, k), synchStatus)
else ((h,...,h, ), synchStatus)
)

(hy,...,h,),synchStatus) ? append(h) = (if h, <, hthen ok else badStateldentifier)

The insert(i) request adds an object, identified by object identifier i, to the set of

synchronization target objects. The object is assumed to be in the initial state for its type, which
must be the same type as the synchronization source object.

(hy,...,h ), synchStatus)linsert(i) = (if i € dom(synchStatus)
then ((hy,...,h,),synchStatus)
else ((hy,...,h,), synchStatus O {(i,(false, hy)})
)

(hy,... h, ), synchStatus) Yinsert(i) = (if i € dom(synchStatus)
then badObjectldentifier
else ok

)

The delete(i) request removes an object from this set:

(hy,...,h,), synchStatus)\delete(i) = (if i€ dom(synchStatus)
then ((h,,...,h, ), synchStatus — { (i, synchStatus(i)) })
else ((hy,...,h,), synchStatus)
)

(hy,....h, ), synchStatus) ? delete(i) = ok

The synch(i) request marks synchronization active for target object i, and brings the target
object to the last recorded state of the source object:

(hy,...,h,), synchStatus)!synch(i) = (if i € dom(synchStatus)
then ((h,,...,h, ), synchStatus W {(i, (true,h,))})
else ({h,,...,h,),synchStatus)
)

(hy,...,h,), synchStatus)? synch(i) = (if i€ dom(synchStatus)
then ok
else badObjectldentifier

)

The pause(i) request marks synchronization inactive for target object i, leaving the object in its
current state:
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(«hy,..., 1), synchStatus)! pause(i) = (if i€ dom(synchStatus)
then (h,,..., I, ), synchStatus W {(i,( false,h"))})
else {h,,...,h,),synchStatus)

where (a,h’) = synchStatus(i)

(hy,... k), synchStatus)? pause(i) = (if i€ dom(synchStatus)
then ok
else badObjectldentifier
)

The synchToState(i,h) request advances the state of target object i to the source object state
identified by £ in the source’s history, then marks synchronization inactive for this target object:

(hy,..., b, ), synchStatus)synchToState(i,h) = (if i ¢ dom(synchStatus)
then ((hy,...,h,), synchStatus)
elseif he (h,...,h)vh<, I
then ((h,,...,h,),synchStatus)
else
(h,,... h, ), synchStatus W{(i,( false,h))})
)

where (a,h’) = synchStatus(i)

(hy,....h, ), synchStatus)? synchToState(i, h) = (if i ¢ dom(synchStatus)
then badObjectldentifier
elseif he (hy,....,h)vh<, h
then badStateldentifier
else ok

where (a,h’) = synchStatus(i)

Finally, the tick request advances the state of all target objects for which synchronization is
active to the last recorded state of the source object. The tick request is so named because in
many implementations, a clock-driven client application will send this request periodically to the
SynchronizerControl object to activate synchronization.

(«hy,..., N, ), synchStatus)!tick
= ((hy,...,h,),synchStatus W {(i,(true,h,)) | 3h’ (i, (true, k")) € synchStatus})

(k... h, ), synchStatus) ?tick = ok

2.5.2 Synchronizer View Specification

Here is a specification of the Synchronizer[T,H,I] view. The parameters of the view

specification are the source object type, the domain for state identifiers in the source object’s
history, and the domain for object identifiers in the set of target objects.

As shown in Figure 15, the view has three source objects: a history object, a synchronization
status object, and an object that contains the synchronization targets. The synchronization status
object consists of a record for each target object; the record has a field that records whether
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synchronization is currently active for that object and a field that records the state identifier that
represents the current state of the target object:

T, = History[T ,H,c]
T, = SetContainer[ Record[active, Boolean, targetStateld ,H],1]
T, = SetContainer{T,I

The view object is of type SynchronizationControl[H,I] as defined above.

T = SynchronizationControl[H,I]

Based on these types, the view function F*"*"=1-#-1} hag the following signature:

Frometronizerto ) s ((H % Q) X Qp )X (I -+ (Boolean, H))x (I - ;)
— H" x(I -» (Booleanx H))

The view function computes, from the states of the source objects, the sequence of state
identifiers in the source object’s history and the synchronization status of each target object. The
computation of the synchronization status allows the possibility that a target object is listed in the
synchronization status object but has been deleted from the target container, or that the target
object has been inserted in the target container but is not yet in the synchronization status object.
In the latter case, the target object is assumed to be in the initial state for type T and that
synchronization is paused.

F Snchronizet DRI (L), ., (RS, L), synchStatus, targetState)

{(G, :sl);r.l’ch':S't,atus (1)) | i € dom(targetState) N dom(synchStatus)}
U{(i,(false,h,)) | i € dom(targetState) — dom(synchStatus)}

The source invariant requires that the state of each target object be an identified state of the
source object, where the state identifier is the one found in the synchronization status object.

Iy, 1), .. (R, 1)), 1), synchStatus, targetState) & Yie dom(targetState)
targetState(i) = (if i€ dom(synchStatus) then £, (1, |...|1,) else &;)
‘where (a, ;) = synchStatus(i)

The update constraint {7 "= 7-#-1]

the behavior of the view.

is identically true; there is no need for further constraint on

2.5.3 Synchronizer Procedure Implementation

Figure 15 shows a direct implementation of the Synchronizer[T,H,I] view by a Syncrhonizer

procedure. This procedure works as follows in response to requests sent to the SC
(SynchronizationController ) object.
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* Inresponse to an append(h) request, the procedure sends an append(h) request to
SourceHistory .

¢ Inresponse to an insert(i) request, the procedure sends a member(i) request to Targets to

determine whether i references an existing target. If so, the procedure returns a
badObjectldentifier response. Otherwise, it sends insert(i) requests to

SynchronizationStatus and Targets .

 Inresponse to a delete(i) request, the procedure sends delete(i) requests to
SynchronizationStatus and Targets .

e Inresponse to a synch(i) request, the procedure sends a member(i) request to Targets to
determine whether i references an existing target. If not, the procedure returns a
badObjectldentifier response. Otherwise, it sends a member(i) request to
SynchronizationStatus to determine whether an entry for that target object has been
created. If not, it creates one using insert(i). In any case, it sends an
invoke(i, invoke _ active(set(true))) message to SynchronizationStatus to turn on
synchronization for this target object. It sends an invoke(i,invoke_targetStateld (get))
request to determine the current state of the target object. It then sends last , get(h), and
succ(h) requests to SourceHistory to retrieve the requests it will send to the target object.

The logic for pause(i) and synchToState(i) is similar. The tick request poses a small problem:
implementing it requires a way to get the identifiers of all objects contained in Targets , so that

their states can be synchronized with the source object. The SetContainer type must be extended
to support this functionality. If this is done, then implementing the #ick request is similar to
implementing synch(i).

2.5.4 Discussion

Object synchronization provides two degrees of freedom in defining the sequence of events that a
target object receives. The first is the type of the source object. If no source object is available
that generates the desired types of events, one can often implement a view object whose type
generates those events, where the view function provides the desired information selection,
abstraction, or transformation. The fact that a view can have a history, and hence that object
synchronization can use a view as a source object, provides significant application flexibility. For
instance:

* Suppose we want to synchronize two relational databases that have identical SQL schemas.
We can synchronize the databases at the physical (implementation) level, so that the file
structures, indexes, etc. are identical. Alternatively, we can synchronize the databases at the
logical (abstract) level, so that the tables have identical contents but have different
underlying physical structures optimized to support different workloads. The logical level is
a view of the physical level.

* Consider an object of type Sef[I] whose state contains references to objects of type T . If
this object is used as a synchronization source object, targets learn of identifiers inserted
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into and deleted from the set. Alternatively, we can use the SubsetContainer view to create
an object of type SetContainer[T,I] as the synchronization source, so that targets also

learn about changes in the states of the referenced objects. Both alternatives are useful.

o A video camera can be modeled as an object whose state is an array of pixels, where the
state is completely rewritten several times per second. Views of this object can be
constructed with feature extraction and object recognition as the view functions, so that the
camera’s state can be abstracted to a set of features or a set of recognized objects. Any of
these objects—the pixel array, the set of features, or the set of recognized objects—can
serve as a synchronization source, depending on application needs.

The second degree of freedom is information quality of service. The frequency and magnitude of
state changes reported to target objects can be adjusted by using an IQoS view of the source
object’s history with appropriate selections for the various parameters. (See Section 2.4.3.)
Quality of service can be adjusted to accommodate low bandwidth communications media or
other computing and communication resource constraints.

2.6 Relationship to Active Databases

The relationship between individual Active Views mechanisms and previous work has been
discussed in previous sections. Here we compare Active Views to the usual notion of active
databases as an overall approach to active information systems.

Traditionally, databases have been passive repositories that cannot alert a user to database
changes. These changes could be recognized only by issuing the same query repeatedly. This is
obviously inefficient. Active database management systems, as defined in the database research
literature, extend conventional relational or object-oriented DBMSs through the addition of ,
event-condition-action (ECA) rules [DGG95]. Numerous active DBMS research prototypes have
been developed [WC96]. A basic form of ECA rules, known as triggers, is implemented in many
commercial relational DBMSs.

The features and semantics of ECA rules vary among DBMSs [PATE93]. However, the
following is representative. An ECA rule has three parts: a specification of the event required to
trigger the rule, a condition to be evaluated when the rule is triggered, and an action to perform if
the condition is true. The action may be a further database update, a transaction abort, or a signal
to some application.

An event represents a change of the state of the DBMS or other occurrence of significance to the
application. Each event belongs to some event class. Active object-oriented DBMSs typically
associate event classes with the operations defined for a given object class, so that an event
occurs when the operation is invoked on a particular object. The event may be defined to occur
before or after the operation is executed. Active relational DBMSs typically provide a fixed set of
event classes for each table, corresponding to insert, delete, and update operations.

ECA rules have several applications, including:

» Enforcing semantic integrity constraints—Rules can detect when a database is updated, check
whether an integrity constraint is violated, and either abort the transaction or update the
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database further to restore semantic integrity. For example, on an insert operation, a rule’s
condition can check for existence of another row with the same key, and the action can abort
the transaction if one exists. Similarly, rules can be used to verify foreign key constraints and
to implement cascade update and delete actions.

* Maintaining replicated data and materialized views—When there are multiple copies of a
database table or other object in a distributed system, rules can be used to detect updates to
one copy and either update other copies immediately or log the update for subsequent
propagation. Materialized views, either local or remote to the source database, can be
maintained in a similar fashion.

* Propagating database updates to applications—The application can do any number of things
with this information, e.g. update a display, send a mail message, or perform further database
updates based on application-specific computation. Such application processing is beyond the
visibility and control of the DBMS.

ECA rules, as they have been defined for active databases, are a powerful extension to
conventional DBMSs. However, ECA rules have two major drawbacks when compared to Active
View mechanisms. First, they are nondeterministic—the effect of a set of rules can differ
depending on which of several rules fires first. As a result, the state of the database can take any
of a number of diverging trajectories. Active DBMSs typically provide a conflict resolution
mechanism such as rule precedence or priority to reduce or eliminate such nondeterminism.
However, these mechanisms add to the complexity of rule execution semantics. In contrast, the
behavior of views, histories, and object synchronization are deterministic, with a single
exception: the state of a history of a view may be is incompletely determined by the states of the
histories of the view’s source objects. This nondeterminism arises from the lack of a total order
of events in a distributed system. However, the nondeterminism is limited in the sense that the
history of the view must be consistent with the history of the source objects for all recorded state
identifiers (see Equation (13).)

Second, ECA rules are not composable—No way has been defined to compose sets of rules into
ever-larger rule bases and to reason about that composition. The experience with forward-
chaining rules for expert systems is that they become brittle and intellectually unmanageable as
the number of rules increases. In contrast, views have clean composition semantics based on
mathematical composition of view functions.

Moreover, the applications of ECA rules listed above can also be accomplished with Active
Views. A semantic integrity constraint is a predicate (boolean-valued function) over the state of a
database or an element of it. The predicate can be used to define a view object whose state is
true if the integrity constraint holds. The view’s state can be updated incrementally based on
changes to the underlying database; if the view’s state is false at the end of the transaction, the
DBMS can abort the transaction. This is a recognized application of materialized views [GM95].
Active Views obviously also support data replication and application notification.

There has been research into how events (as opposed to rules) can be composed into higher-level
events. A good example of this is Snoop [CKAK94]. A composite event occurs when more
primitive events occur in a particular pattern over time, e.g. a database table update followed by
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the clock reaching 12:00. Snoop provides several operators (and, or, sequence, etc.) for
composing events.

Active Views can accomplish the equivalent of event composition very simply. For example,
suppose there is a set of primitive events {a,b,c,...} and that a composite event is defined using

a regular expression over the set of primitive events. The composite event occurs whenever a
sequence of primitive events occurs that matches the regular expression. It is well known that for
any regular expression there is a finite state automaton that recognizes sequences of symbols (the
events) defined by the regular expression. (See, for example, [AU72]). A finite state automaton is
defined by a set of states, a set of input symbols (events), a state transition function, an initial
state, and a set of final states. One can easily define a corresponding object type in which the
request domain is the set of primitive events. The type’s response function would return true
whenever the object entered a final state (indicating that the composite event had occurred),
otherwise false . More complex event composition operators, such as those that generate

composite events based on parameter values carried by the primitive events, can also be mapped
to object types.

Finally, we believe that reasoning about states is easier than reasoning about sequences of events.
In object-oriented analysis and design, reasoning is in terms of states, invariants, and pre- and
post-conditions [MEYE97,KR94]. Furthermore, reasoning in terms of states allows us to employ
well-understood notions such as function composition and distance functions.

2.7 Future Work

There are a number of ways the current work can be extended. First, of course, is to develop
more substantial implementations of Active View concepts in a specific application domain. A
number of application domains involving monitoring and control of large-scale dynamic systems
can use Active Views to good benefit. Examples include:

¢ An information dissemination service to which client applications could subscribe to
information from a variety of sources. Client applications would describe their information
needs in terms of compositions of basic view functions, and also specify their information
quality of service requirements. The dissemination service would use the algebraic
properties of the view functions and the quality of service requirements to identify
opportunities to merge multiple clients’ requests, thereby reducing overall network
bandwidth requirements.

* A distributed process control system, where controllers on a network gather measurements
at regular intervals from hundreds or thousands of sensors. Process operators, maintenance
engineers, and process engineers need different views of the same data, either the raw
sensor data or data derived by diagnostic or state estimation algorithms.

* A shared collaborative workspace. Collaborators may have different information needs
based on their roles in the collaboration and therefore required different (but synchronized)
views of the shared workspace.

Over time, a general-purpose distributed situation awareness infrastructure could be developed
that could be retargeted to multiple applications.
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A second direction is to develop a significant library of view implementations from which
applications can be developed. We believe that such a library should be based on well-
understood, broadly applicable mathematical concepts such as sets, bags, relations, functions,
tuples, etc. These concepts form the basis for the Z and Larch libraries [SPIV98, GH93]. The
implementations should be compatible with widely-used object libraries such as the C++
Standard Template Library [SL.94] or the Java Foundation Classes [FLAN97].

A third direction is to extend the Active Views mechanisms in various ways. For instance, bi-
directional or multi-directional object synchronization should be provided. Currently, object
synchronization is uni-directional: the target objects may not be updated except by the
synchronizer as a result of updates to the source object. The difficulty lies in the fact that, if the
objects are updated independently, their states may diverge, with no general way of reconciling
the differences. In general, application-specific reconciliation algorithms are required
[GRAY96], but can perhaps be supplied a parameters to general-purpose services as the
compression and distance functions have been for the IQoS view.

A fourth direction is to extend current database query processing techniques with Active Views
concepts. The power of a DBMS would be considerably greater if a query could involve data
computed using application-specific view functions. For example, a process plant database could
allow a client to query process or equipment health parameters, e.g. “what pumps have had
greater than average load over the past month?” Answering such queries requires both access to
historical plant data and execution of process- or equipment-specific computations. Examples
arise in other application domains such as military intelligence, where answering queries like
“what tanks are within 10 miles of here?” requires a combination of image retrieval, image
processing, and data fusion. A client posing such a query should perceive no difference, except
possibly in response time, between querying stored and computed data. These extensions would
be based on the ability to express queries as expressions involving relational algebra operators
and application-specific view functions, and to transform such expressions using query
optimization techniques to achieve better performance.

54




Section 3
Block-Based Programming

In this section, we present the Presto block-based application programming model and its
extensions to support Active Views. The model is based on a data flow programming approach to
facilitate construction of continuous multimedia applications. With the model, application
functions are implemented as blocks and applications are “programmed” by interconnecting their
functional blocks. Thus, the model enables the plug-and-play programming paradigm, making
application programming easy and efficient and supporting reuse of application software. Section
3.1 describes the original Presto programming model, and Section 3.2 covers the Active Views
extensions.

In the course of extending the extending the Presto programming model to support Active Views,
we replaced the existing, custom-built distributed execution environment with one based on
COTS products, most notably Iona’s Orbix CORBA implementation and Object Design’s
ObjectStore database management system. Section 3.3 summarizes our experience in doing this.

3.1 Presto Programming Model

A program is an application programming model for describing continuous multimedia
applications based on the data flow paradigm. It consists of a set of blocks interconnected
through data ports by media flow paths. Figure 17 shows an example of a video-capture-process-
display program comprising video camera, motion detection, color filter, and display blocks.

SATURN PHX-3 MOTION DETECTOR

DISPLAY

Figure 17. Example Block-Based Program

A block consists of:

e A vector of input ports that accept incoming data streams
e A vector of output ports that produce outgoing data streams

e A vector of parameter ports that are used to set operating parameters
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* A function that produces output streams, consumes input streams, or transforms input
streams into output streams,

* A pair of matrices for data rate and QoS translation between input and output ports.

A block is called basic block if its function is coded in a language such as C++ or composite
block if it is formed by assembling and connecting a set of basic blocks. Figure 18 shows
example basic program blocks.

Camera

Display
Blocks to Resolve Port Type Conlflicts

————

Video Recorder

Hierarch

Contour Detector Multimedia File System ATM Network Video Enhancer

Figure 18. Example Program Blocks

A port is an interface of a block that captures interactions with other blocks. As illustrated in
Figure 19, it is defined by a data type (JPEG, audio, etc.), a data flow direction (input or output),
and a control flow type (push or pull). In push-type control flow, the output port takes the
initiative to deliver data to the input port. In pull-type control flow, the input port requests data
from the output port. Therefore push output ports and pull input ports are active, whereas pull
output ports and push input ports are passive.

Input  Output

Pul [—e] [
Push [g—>] [e=]

Figure 19. Port Types

Presto includes a Program Development Tool (PDT). Using the PDT, a user can construct a
program from a library of basic blocks, composing them by connecting output ports to input ports
without regard to push/pull port type compatibility. Such a program is called a user program.
The Sonata PDT is an evolution of the Presto PDT.
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Presto transforms a user program to a system program, as illustrated in Figure 20, by locating
push/pull incompatibilities and correcting them by inserting special blocks. If a push output port
is connected to a pull input port (both ports are active), Presto inserts a buffer block between
them. If a pull output port is connected to a push input port (both ports are passive), Presto
inserts an activity block between them. Separation of the user program from its corresponding
system program makes the control flow—the push/pull semantics—transparent to the application
programmer and simplifies block-based programming.

User Program #7
Block
* Push/pull

Resolve Port . g::: type
Type Confiict « Location

System Progra mﬁ
Block

Figure 20. User Program to System Program Translation

The Presto block-oriented programmirig model was inspired by other work on process control
applications [SVK93], graphical application development [HAEBES8, INGAL88, KASS92], and
commercial simulation tools. However, the previous work did not explicitly address the system
integration and timing issues encountered in constructing continuous multimedia applications.
Presto was unique in providing a software methodology that integrates user-level application
development and system-level application execution and in extending the block-oriented
programming model with rate and QoS properties to support the temporal constraints of
multimedia applications.

3.2 Extensions to Support Active Views

We developed extensions to Presto’s data-flow oriented, block-based programming model to
support operation flows in addition to data flow, and to handle aperiodic flows in addition to
periodic flows. These changes were necessary to implement Active View services, and moved
the range of applications well beyond the continuous media applications that Presto supported.

In Sonata, we implemented two of the three Active Views mechanisms: view and object
synchronization. (We did not implement histories as described in .) Figure 21 shows how a block
is structured to realize both view and object synchronization functionality. Each input port
consists of an object O, that receives a flow of requests from the output port of a predecessor
block. The object is an interface to a procedure Derivative, that performs two functions: it

updates an internal object O that maintains a materialized state of the view, and it send requests
representing any view state changes to all successor blocks. In performing these functions, the
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derivative procedure can access the materialized states of the predecessor blocks as shown in the
figure.

In short, each time a block receives a request from a predecessor block at one of its input ports, it
computes the implied change of state of the view and sends it via the output port to successor
blocks. This approach propagates state changes through blocks quickly, but can be less efficient
than an approach that uses histories to "buffer" state changes arriving at its input ports, and
computes the change in the state of the view based on all buffered state changes. Again, we did
not implement histories or any concept of information quality of service.

A successor block can be linked to the output port at any time, even while the block is executing.
When this happens, the output port sends a sequence of requests to the new subscribing input
port that effectively transmits the current state of the materialized view object O . This sequence
of requests is constructed by a procedure (not shown) that has access to the internal
representation of O. Once the new successor block is “brought up to speed” with the state of the
view, any changes of state are sent to it and the other successor blocks as described above.

Block

Input Port 1

Predecessor Block 1

Output /
Port

\ OUtan Pon
: Derivative, pq \ Subscribers:
Set[OID]
> oT Jf
Input Port n

4y O T

n*

Output
Pot T —uor__ |
‘ |

Figure 21. Internal Structure of a Block
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3.3 Re-Implementation of the Distributed Execution Environment

For many reasons, including development cost and standards in the application domain, we
decided to use commercial off-the-shelf products for distributed object services and persistent
object management. Choosing the best products for our particular needs was quite important.

The COTS products that we picked were Iona’s Orbix and Object Design’s ObjectStore. The
application domain standards mandated the use of CORBA [OMG95]. We chose Orbix in view
of its dominant presence in the Unix environment. The selection of an object database was much
more difficult—since there are a plethora of products, but no standard. We chose ObjectStore,
based on a survey of OODBMSs [PS97].
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The choice of these products strongly affected the design and implementation of our system.

Object systems interoperability—We were faced with the problem of handling three different
object systems, i.e., the one that comes with the programming language (C++), the distributed
object management system (CORBA/Orbix), and the object database system (ObjectStore).
There is enough difference in the three approaches and their abilities that we had to consider
interoperability issues. For example, CORBA and ObjectStore have different object
granularities—we could model an ObjectStore collection as a CORBA object, but the individual
objects that comprise such a collection couldn’t be easily fit into the CORBA model.

The CORBA model defines an object by its interface, while the ObjectStore model is tied to the
implementation of an object. This tension both helped and hampered us. It helped us in that the
two systems affected different parts of the design, and changes made for one did not affect the
other too much. It hampered us by increasing the number of variables to deal with in the overall
design and implementation.

Distribution—A related issue was that CORBA and ObjectStore have different models of
distribution. This strongly affected our model of distribution.

CORBA was mainly useful in making our framework support distributed applications. We
discovered that, since our framework imposed certain requirements on the style of code written,
making it distributed was relatively easy. The transition to using CORBA was reasonably
painless, once we understood the conceptual differences in the object models.

Database design—ObjectStore’s implementation exposed reference semantics, which are not
naturally modeled by conventional database views. We thus had to make some basic changes to
our model to accommodate this.

Choice of an object-oriented language—The choices were C++ and Java. C++ has more
mature off-the-shelf products, but Java claims to be the language of choice for distributed
objects.

We felt that C++ should be the language used, since most of the COTS products for Java weren’t
mature enough at the time.

We used C++ templates extensively to enforce interfaces, without being too dependent on a class
hierarchy to provide it. This was of great help when we had to modify our class hierarchy to
accommodate Orbix and ObjectStore. Also, the concept of template traits helped us hide the
differences in accessing persistent and non-persistent objects, and differences in accessing local
and remote objects.

Real-time and QoS—We envisioned the application being used interactively, with the
presentation of multiple related data-types at the same time. For example, one window would
show a map, another would show a video of the same location, and another would list the
resources in that area.
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In enforcing real-time and QoS requirements [WS96], we were strongly limited, since we had no
good model of the behavior of the COTS products that we used. Due to this, we have not yet
addressed these issues in our implementation.

3.4 Conclusion

From conception to design to implementation, we learned and re-learned many of the lessons in
[SF97]. We found that just deciding to use COTS technologies wouldn’t immediately solve all
our problems in the areas they address. This framework benefited strongly from being
incrementally designed from Presto.

In conclusion, we believe that the use of COTS technology has added value to our project, and
the benefits of using them outweigh the costs. The support for persistence and the support for
distribution have allowed us to enhance and enrich our framework.
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Section 4
Application Development Tools

4.1 Introduction

This section is a report of the Program Development Tool (PDT). It describes the overall project
environment for which the toolkit is built, specific requirements of the tool, design and
implementation issues. It also proposes avenues for further research.

The remainder of this section gives an overview of the multimedia project and focuses on the
aspects specific to the Program Development Tool. Section 4.2 discusses the need for such a
toolkit. Section 4.3 describes the design issues that have been tackled by the group. The
implementation issues are discussed in Section 4.4. There are many areas in which future
research is possible. These are described in Section 4.5 for those who would like to continue
work on the toolkit. Finally, Section 4.6 concludes the report by highlighting the key aspects of
the project and the lessons learned.

4.1.1 PDT Overview

There has been an increasing interest in the area of multimedia systems, causing it to emerge as
an independent discipline of study in computer science and engineering. Consequently, a number
of commercial products and prototype systems with various levels of sophistication and
abstraction have been built in the last few years. However, it has been observed that the current

programming paradigm for developing multimedia software needs some improvement
[PATEL9S5], and [TG95].

Sonata’s programming model is to visualize a multimedia application as a directed graph,
wherein the nodes represent common generic multimedia blocks (Camera, Display, etc.) and the
edges depict the flow of multimedia streams. The nodes in the graph, called blocks, represent
operations that modify streams as they flow through them. The operation parameters of a block
are specified through parameter ports. The multimedia streams flow through data ports.

The development of a programming paradigm is typically accompanied by the design of new
languages and an associated set of development tools. Based on experiences in software
engineering and language design, it is hoped that these tools will make it easier to write Sonata
programs (or applications), and consequently help in enhancing Sonata’s programming language
and interface.

The Program Development Tool is part of the Sonata development toolkit. It facilitates the
creation and modification of Sonata applications using the block-based programming paradigm.
Using the Program Development Tool is the first step in the implementation of a multimedia
application. The output of the tool is transferred to the User Interface Design Tool (another part
of the development toolkit) before being executed by the Sonata run-time environment.
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4.1.2 Integrated Toolkit Environment

In order to exploit the ease and power of Sonata, a high-level application toolkit has been
designed. The three basic needs from the toolkit have been defined as

* Specification of blocks, ports and connection structures
» Specification of user interface component parameters
* Verification and analysis of applications

In response to the above requirements, the application development toolkit consists of three
separate yet integrated tools, namely

* Program Development Tool (PDT)
* User Interface Development Tool (UIDT)
* Program Analysis Tool (PAT)

The PDT facilitates the creation and maintenance of Sonata applications. It allows the user to
specify the blocks and the interconnection between them in an application. The UIDT is used to
interactively define the behavior of the user interface blocks. The PAT is intended to serve as an
error detection and correction tool for the application.

The advantages of having an integrated toolkit are numerous. The PDT frees the programmer
from the burden of specifying a graphic structure in a non-graphical language. The UIDT
eliminates the need for writing customized user interface code. The PAT is targeted to save
valuable time by automating the error detection mechanism.

One of the key issues to be discussed later is that of implementation. There are a few
requirements that have been imposed on the toolkit. The main issues here are

* Interoperability between tools
» Ease of use (minimal learning curve)
* Portability

Section 4.4 describes these issues in greater detail and provides the key decisions that have been
made regarding the implementation.

4.1.3 Programming Model

Continuous media applications can be modeled using the data flow paradigm [TAC+95],
[SVK93]. In such a paradigm, an application program consists of a collection of data pipes that
regulate the flow of continuous media streams through functional blocks, which encapsulate
functions or operations that are performed on continuous media streams. The pipes and blocks
are depicted by a directed graph to achieve the overall functionality of the application.

Typically, the data is generated by source blocks (camera, file system, microphone, etc.) and
presented to the user by sink blocks (display, speaker, etc.). Between the source and sink blocks,
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pipes connect the intermediate blocks various processing (image recognition, thresholding,
synchronization, etc.) functions. Figure 22 illustrates an example application.
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Figure 22. Interactive Video-on-Demand

The application shown above is an interactive video-on-demand system. The user selects the
multimedia file to view, and then manipulates it using the VCR Control block. The CompFile_c
block supplies the continuous media stream of information while the Display_c block gets the
data and displays it to the user. The VCRControls_c block allows the user to browse through the
CM frames.

The Sonata programming and run-time environment supports the construction and execution of
distributed multimedia applications. It allows the construction of new applications from a set of
primitive blocks via a basic programming language.

A primitive block consists of the following components

e An associated piece of code that implements its functionality
e A set of data ports that are used to pipe in/out multimedia streams
e A set of parameter ports that are used to set its operating parameters

The source code that implements the functionality of the block is totally generic. It does not have
any application specific routines. For example, the CompFile_c block in the application shown in
Figure 22 is not aware of the fact that its output is being sent to the Display_c block. The
application specific parameters of a block are set by its parameter ports.

Data ports, used to input/output data streams from blocks, consist of two types according to their
functionality: input ports and output ports. Furthermore, when two blocks are connected to each
other, the data ports can also be classified as push or pull depending on which block is
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responsible for the data exchange. If a receiving data port is responsible for the action of actively
grabbing data, then it is said to be a pull port. Conversely, if a connected output port is
responsible for actively sending the data, then it is said to be a push port.

Parameter ports are used to set the operating parameters of a block. There are various classes of
parameters that a particular block may have. A display block, for example, will have ports that
convey its geometric information, such as its size, location and screen offset. Ports can also
convey Quality of Service parameters [WS96]. Parameter ports may be either static (value
specified at creation time) or dynamic (value specified at run time).

4.2 The Need for PDT

With the program development tool, the user works at a convenient level of abstraction—the
block. At this level, the details of implementation are omitted. Hence, the user is allowed to
focus on the more creative aspects of multimedia programming. The implementation details will
be specified later in the program creation process.

PDT provides an easy-to-use interface with a minimal learning curve. The operations that can be
performed are intuitive and very easy to understand. At the same time, the tool is flexible and
versatile. It can handle the most complicated application program as easily as it can handle a
simple one. 1t is also designed to be as comprehensive as possible, thereby allowing the user to
complete the entire application without leaving the toolkit environment.

Prior to the implementation of the program development tool, a list of requirements was laid out.
The specifications essentially stated what was expected of the toolkit. The remainder of this
section describes the requirements in greater detail.

4.2.1 Requirement Specification

The tool is required to achieve a list of suggested features, as indicated below.
2.1.1 Block/Port Requirements

The tool should allow the user to:

Create a new block,

Establish a connection between two blocks,
Delete an existing block,

Delete a connection between two blocks,
Modify the data ports of an existing block,
Modify the data ports of an existing connection,
Add a parameter port to a block,

Delete a parameter port from a block,

Modify the parameter ports of an existing block,
View the ports and connections of a block.

2.1.2 Editing Capabilities
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All blocks and connections are drawn on an application canvas. The tool should allow the user
to:

Select a set of blocks on the canvas,

Deselect a set of blocks on the canvas,

Copy the selected blocks to the clipboard (an offscreen buffer),
Cut the selected blocks to the clipboard,

Paste the contents of the clipboard,

Move a set of blocks around on the canvas,

Refresh the canvas,

Undo the last change.

4.2.2 Input-Output Specification

All application programs are stored in a file. Hence, the tool should be able to recognize and
work with the specified file format. Furthermore, it should allow the user to

Save the current session to a file,

Open an existing application from a file,
Start up a new application program file,
Quit with/without saving changes.

The format of an application program is divided into five different parts. The first part consists of
a list of machines on which the application will execute. For each machine, the canvas size and
background color is stored. The second part is a list of blocks and its definitions. The third part
shows the connections between the blocks and specifies the ports at which the connection is
being made.

The fourth and fifth part contains a list of parameters for each of the blocks. For each parameter,
its type and value is stored.

4.2.3 Integration with UIDT

The Program Development Tool is closely knit with the User Interface Development Tool. The
UIDT allows the specification and modification of the properties of user interface blocks, such as
camera, display, speaker and microphone. The parameters of these blocks can be modified
interactively using the UIDT.

Because of the close connection between the two tools, one of the requirements stated that the
two tools be integrated. The user should be able to interoperate between the two tools. Both the
tools share a common file format. The implementation of the integration will be discussed more
specifically in Section 4.4.

4.3 Design Issues

As with any good project schedule, a significant amount of time was spent in the design of the
Program Development Tool. The key issues discussed were compatibility with UIDT and block-
based design. The design phase of PDT included the following tasks
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e Determination of program structure
e Identification of block hierarchy
¢ Identification of objects and methods

In determining the program structure, it was decided to modularize the program as much as
possible. The input and output functions are kept separately from the main program, so that
future modification is easy. A generic library of functions is made available, so as to enhance re-
use of code. Finally, the design is very flexible and allows for easy maintenance and
modification.

For the most part, the identification of objects and methods was trivial. The complications arose
in case of composite blocks. Blocks may be composed of other blocks.

The entire design document is attached at the end of this report as an appendix. The remainder of
this section discusses the key points that were encountered in the design process.

4.3.1 Block and Port Design

A set of connected blocks can be part of a composite block. The composite block may then be

used as part of another application. This hierarchical organization of blocks leads us to using a
tree structure in its representation. To give an example, the CompFile_c block shown in Figure
22 is actually a composite block and its internal representation is shown in Figure 23.
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Figure 23. A Composite Block

With the representation of composite blocks, there is the notion of zooming in and out. Zooming
into a block exposes its internal representation. Zooming out of an internal representation shows
the block level view. The program in Figure 1 is the zoomed out version, which is the default
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view of an application. The zoomed in version, with the exposed internal representation of the
composite block is shown in Figure 24.
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Figure 24. Zoom In View

As part of the design process explained earlier, an identification of the objects for blocks and
ports was done. A class Block was defined that contained the following information:

* Block number: Integer

* Block name: String

* Associated block source code: Text
e List of Parameter Ports: List

» List of Data Ports: List

A class called Port was also defined that had the following information:

* Port name: String
* Port type: String
* Port value: String

Each instance of the class Block contains a list of Port objects. The object definition contains the
relevant methods that are required to add, delete or modify a particular port.

4.3.2 Connection Design

There are two different ways of storing the connection information. The first is to flag the ports
in the corresponding blocks and define the flags as a connection. In this case, the block object
defined above would contain an additional list of flags for the data ports.
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The second way is to have a separate object called a Connection object in which input and output
block tags are kept. The Connection structure is maintained separately from the Block structure.
It has its own methods for addition, deletion and modification.

The former approach has a couple of drawbacks. Information about the connection is stored
twice (at the input and output block object). When a connection is to be deleted, it is ambiguous
as to which block should take the responsibility. All modifications would have to be performed at
two places instead of one. The only advantage gained by having the connection information in
the same object is that it avoids the need for having a separate object.

With all the disadvantages of the former method, the latter approach was finally selected. The
connection object is a separate identity and it contains its very own information, which is

* From Block Number: Integer

* From Block Port Name: String

* To Block Number: Integer

* To Block Port Name: String

The advantages of the latter approach are numerous. The maintenance of connection information
is very easy. Deletion of a particular connection involves removing only one instance. There is a
single object repository of all information pertaining to the connections in the application.

The application program file is now made very simple. It is an object that contains quite simply a
list of blocks and a list of connections. The block object contains all the details of its data and
parameter ports. The connection object contains all the details of the connection structure in the
application.

4.4 Implementation Issues

Having done the design, the implementation phase should really have been trivial. However,
there are a lot of issues that came up during the project. Most of these issues were to do with the
user interface. Most of the feedback was incorporated into the program and then resubmitted for
appraisal. This feedback loop continued for most of the project, especially after the first draft of
the toolkit was released.

Apart from the user interface issues, there were other relevant concerns like the language of
implementation and compatibility between the other tools. The remainder of this section
discusses these issues in greater detail.

4.4.1 Language Issues

The language of implementation was chosen with several different factors in mind. It was
decided to use the language that best fit the requirements. The requirements of the
language/system were

* Portability

¢ Ease of maintenance of code
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* Object-oriented methodolog
* GUI capabilities

The biggest factor among all is portability. The toolkit is designed to work with any platform.
Communication between the tools is done using a file, so the language must provide the ability to
work with files. To provide for future modifications, the language must be easy to understand
and read. This helps in the maintenance of the source code. Most object-oriented languages have
this advantage.

Another reason to use an object-oriented language is because the design of blocks and ports uses
objects. A block can be defined as a class and each instance would be an object. Ports can be
similarly defined as classes. Connections can be implemented using classes as well, where the
block tag would essentially correspond to the object reference.

It would be highly beneficial if the chosen language also contained GUI capabilities. Most user
interface APIs are known to be platform specific (e.g. Motif with X, Visual C++ with PCs). If the
language itself had built-in GUI routines, then the language is typically platform independent
(e.g. Tcl/TK).

The language finally chosen was Java [GYT96]. It has all of the features described above and
more. Java seems to be ideally suited for the task. The other languages considered were Tcl/Tk
[OUSTE93] and C++. The drawback of Tcl/Tk is that it’s a scripting language with insufficient
object-oriented features while C++ is not too portable and does not have many platform
independent GUI capabilities.

With the implementation in Java, the toolkit is portable to any system that supports the Java
Virtual Machine.

4.4.2 User Interface Issues

There was a lot of time spent on designing the user interface of the Program Development Tool.
After the implementation, the user interface was shown to the potential users and their feedback
was considered for the next revision. This process was implemented a couple of times until the
users were satisfied.

The final layout of the user interface was found to be pretty appealing. It is easy to use, flexible
enough to support enhancements and powerful enough for complicated applications.

4.4.3 Integrated Toolkit Issues

The program development tool is part of an integrated toolkit. There is a need to ensure seamless
interaction with the other tools. The file format of the program depends on the mode of
interaction with the other two tools.

The file format that was used is given below. The format captures all the information required for
the program application. It can be easily used to represent the application with all the three tools.
Note that there is no toolkit specific information represented here.
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# Canvas Information

~<Canvas #> <Canvas Name> <Canvas Location> <Canvas XOffset>
<Canvas YOffset> <Canvas Width> <Canvas Height> <Canvas
LeftFooter> <Canvas RightFooter> <Canvas Color Red> <Canvas
Color Green> <Canvas Color Blue>

-1 NoFrame NoLocation -1 -1 -1 -1 NoLeftFooter NoRightFooter
-1 -1 -1

# Block Information
<Block #> <Block Name>
-1 NoBlock

# Connection Information
<From Block #> <From Port Name> <To Block #> <To Port Name>
-1 NoPort -1 NoPort

# Parameter port information
<Parameter Name> <Block #> <Parameter Type>
NoParameterPort -1 -1

# Parameter port information
<Parameter Name> <Parameter Value>
NoParameter NoValue

# End of File Marker

-1 NoFile

For example, the file format of the application in Figure 22 is given below.
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0 Canvas0 rawana 50 50 400 400 presto presto 255 255 255
-1 NoFrame NoLocation -1 -1 -1 -1 NoLeftFooter NoRightFooter
-1 -1 -1

3 Display c

4 VCRControls_c

5 CompFile_c

-1 NoBlock

4 VCROutput 3 VCRInput
5 Output 3 Input

-1 NoPort -1 NoPort
DispLoc 3 Location
DispX 3 XLocation
DispY 3 YLocation
DispW 3 XWidth

DispH 3 YHeight
VCRLoc 4 Location
VCRX 4 XLocation
VCRY 4 YLocation
VCRW 4 Xwidth

VCRH 4 YHeight
NoParameterPort -1 -1
DispLoc rawana

DispX 200

DispY 200

DispW 100

DispH 100

VCRLoc rawana

VCRX 200

VCRY 100

VCRW 100

VCRH 10

NoParameter NoValue
-1 NoFile

4.5 Proposal for Further Research

Although the integrated toolkit is stable, there is a lot of potential work that can be done in this
area. This section describes the avenues in which future research is possible.

4.5.1 Interaction with CMT

The Continuous Media Toolkit (CMT) is a system developed to support continuous media flow.
One of the ongoing and future directions of this project is to make the Program Development
Took interact with CMT.

CMT provides an extension to the Tcl shell. The program file can be translated to a Tcl program
by means of a translator. The job of the translator would be to interpret the various blocks in the
application and try to use the corresponding Tcl commands.
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Once the translator has successfully translated the file, the resultant Tcl program can be executed
under the Tcl shell. There are a couple of hurdles in this task though. The biggest one is to
achieve distribution. There is a slight incompatibility in the way CMT handles distributed
applications versus the way PDT handles it. This issue needs to be resolved before an efficient
translator can be built.

4.5.2 Implementation of PAT

The Program Analysis Tool is intended to serve as a potential performance analysis and
compatibility verification tool. There are many advantages of having the PAT. Earlier error
detection leads to a large gain in time. The automation of the error detection mechanism
minimizes human error.

The complexity of the PAT can be of varying degrees. The most basic analysis would be to check
the compatibility of connections between ports. On the other hand, more complex analysis would
involve type checking and error correction.

The implementation of the PAT is a large area of further research. It can be very advantageous to
the overall system.

4.6 Conclusion

The program development tool is part of an integrated toolkit that allows the user to build
distributed multimedia applications. The tool is fairly easy to use, powerful and flexible. There is
a need for the program development tool to allow the user to concentrate on the systems aspect of
the application rather than having to worry about the underlying blocks.

The PDT provides the basic editing capabilities on the blocks and ports. Apart from that, it
allows the user to work on a wide variety of functions that are comprehensive. The user interface
is powerful. It can handle the most complicated programs as easily as it can handle the basic
ones.

There is a large scope of further research in this area, especially with regards to interaction with
the Continuous Media Toolkit (CMT) and the implementation of the Program Analysis Tool
(PAT).

It is hoped that the experiences in this project will benefit future systems in this area. The project
has been a tremendous help in our understanding of the development of multimedia systems.
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Section 5
Continuous Media Server

5.1 Introduction

Continuous media (CM) server has recently been a hot research topic for several reasons. First of
all, network speed is increasing, thus, in the near future, services like Video on Demand,
Teleconferencing, Distance Learning are very likely to be popular in everyday life. But, given the
limitations of current network bandwidth, straightforward TCP implementations are not suitable
for such bandwidth-sensitive applications.

TCP has its own flow control mechanisms, error detection and retransmissions, all of which add
extra time as well as network bandwidth overhead to the transmission. This causes unexpected
and unpredictable delay and jitter time when transferring CM data, while timing is one of the
most critical requirements of CM applications. Most CM applications don’t need highly reliable
transmission. Losing some frames is less important than having too much delay jitter or losing
synchrony between streams. A convincing fact is that a typical TCP connection bandwidth is 2.6
Mbps on a LAN, 580 Kbps on the MAN, and 104 Kbps on the WAN. While for UDP, they are 9
Mbps, 5 Mbps, and 1.2 Mbps respectively on LAN, MAN and WAN. Obviously, TCP is not a
good candidate for high bandwidth media streaming.

Given that observation, the natural questions are:

o Is UDP suitable for CM applications?
e How good/bad is it?
e What are the criteria (QoS) to for evaluating it?

o Ifitis bad, how do we reduce the lossy property of UDP while still making use of its higher
capability of bandwidth for applications that are speed-sensitive like CM servers?

Secondly, the loss of UDP packets sending over a network is usually caused by buffer overflow.
We have tested out that if a sender keeps pushing UDP packets onto the network, even if network
bandwidth is good enough to handle it, there are still a lot of packets lost because the consuming
time of the receiver is quite large. This applies perfectly to client/server kind of application. For
example, with video streaming, the consuming time of a client depends largely on the capability
of video cards, which are not always good. This is even worse for audio streams, an 8 kHz audio
stream (e.g. telephone voice) can be played only at 64 Kbps. This delay could cause lots of
dropped UDP packets if there is nothing done at the client and/or the server. Moreover, buffer
overflow can occur at any of the network switches as well. How do we detect and deal with the
fact that the client is good enough to handle data but network congestion limits the stream
reliability.

Next, the fact that human ears are a lot more sensitive to interrupts in voice than human eyes to
interrupts in video frames, raises up another natural question: how do we deal with loss of UDP
packets in loss-sensitive stream like audio?
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Moreover, given limited resources like network bandwidth, I/O time (disk seek, latency time),
memory capacity, and CPU time, the capability of a CM server will obviously be reduced as the
number of streams (clients) increased. A best effort strategy is simple, but a preferred policy is to
deny a request if the CM server knows that it is not able to handle the request. An appropriate
admission control algorithm must be adopted for this purpose. Even if all the above problems
have been solved, inter-stream and intra-stream synchronization are questions next to be
answered.

Lastly, we ported our socket-based CM server with CORBA. We used version 2.0 of Orbix from
IONA Technologies as the CORBA implementation. These versions replace all C socket calls
with stubs and skeletons generated from a pair of CORBA interface definition language (IDL)
specifications. The IDL specification uses it sequences parameters for the data buffer rather than
string parameters, which are a bit slow. Due to the higher fixed overhead of CORBA such as
demultiplexing and memory management, this version shows much lower performance.

In this section, we present a design and implementation of a QoS-driven CM server based on part
of the analysis presented above.

5.2 Related Works

This section summarizes some work that have been done related to CM delivery mechanisms,
CM server architectures, network protocols for multimedia data, and some admission control
algorithms known in the literature. Many research systems use TCP/IP for media transmission.
As we have discussed in the previous section, UDP seems to be a better choice for bandwidth
sensitive applications. One of the most popular CM delivery tools is the Continuous Media
Toolkit (or CMT for short) [SMITH94, PATEL95]. CMT has a Tcl/Tk interface that allows
quick prototyping, and makes multimedia programming easier. In CMT, media data within a
stream is read from files by MediaSource object associated with that particular stream. Then, the
data is passed to PacketSource, which then break the frames into packets and send them to
PacketDest objects. PacketDest resembles the frames from the packets received and invokes the
CMPlayer after some certain interval for displaying (to screen or to audio device). CMT currently
supports SUN au, MJPEG, and MPEG. However, CMT has its own network protocol and
dropping strategies, which are sometime not suitable for certain kinds of requirements (e.g.
synchronization). Also, it makes it difficult to test out other protocols, dropping policies, and
such.

Z. Chen et al. described Vosaic [CTC]}, an extension of Mosaic to support Video and Audio on
the web. Vosaic supports playing back on the web browser. The approach taken in Vosaic is
similar to that of CMT. It uses Video Datagram Protocol (VDP), which is a retransmission based
protocol like Cyclic-UDP, but simpler. They have shown that VDP performs reasonably well and
that multimedia on the current Internet is possible. However, Vosaic has a really simple
admission control protocol. Basically, it only restricts the number of concurrent streams
connected to the web server. Moreover, Vosaic is multiprocessing based, which is not really a
good choice in some cases.

With respect to QoS metrics, Steinmetz has done impressive work on surveying as well as
specifying interesting factors that affect human perception on various aspects of multimedia
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[STE96]. However, Steinmetz did not consider the lossiness of the streams, hence made the
parameters unsuitable for evaluating lossy CM applications. Wijesekera [WS96] defined a
different metrics that are more suitable for the lossy nature of UDP based CM communication.
Our experimental evaluation is based on his metrics.

5.3 Motivation & Objectives

In order to achieve high performance in designing our CM server, we should consider the
resource constraints as well as the properties of CM streams. CM streams have their own features
and special QoS metrics. Since we decide to design our CM server and clients based on the lossy
UDP, we should adopt the QoS metrics that are suitable for the lossy protocol. These QoS
metrics play an important role in our QoS-driven CM server (in particular, QoS Manager).

In this section, we discuss the resource constraints, the QoS metrics for CM streams, and our
objectives in designing our CM server.

5.3.1 Resource Constraints

The performance of a CM server is constrained by the resources it can make use of. The CM
server is I/O bound. The most important resource is the I/O bandwidth. Usually CM streams are
stored as files in disks. A disk is divided into blocks. Disk rate decides the maximum block rate
for a file system. The achievable disk /O bandwidth is constrained by the structure and
scheduling algorithm of the file system. When multiple CM streams are stored in the same disk,
this achievable disk I/O bandwidth decides the maximum number of concurrent CM streams.

Another resource is the available buffer size for CM streams. The operating system’s virtual
memory is much large than its physical memory. However, we want to keep our buffer inside the
physical memory to save the valuable disk /O bandwidth. So the system’s physical memory of
the operating system is an upper bound for the total buffer size. The available buffer size is less
than this because the operating system and user program occupy some memory.

Since our CM server communicate with clients by network, the network bandwidth is another
constraint for our CM server. There is one connection between the server and a client. Given the
fact that nowadays the network bandwidth is much higher than disk bandwidth, we assume that
the disk bandwidth gives a more tighten bound than the network bandwidth.

The communications between our CM server and clients are based on UDP/IP protocol instead of
TCP/IP. UDP is a lossy protocol, so some Logical Data Unit (LDUs) [STE96] may be lost.
Actually, for CM streams, such as video and audio, some losses are tolerable. This requires us to
define some kinds of quality of Service parameters to measure the losses.

5.3.2 QoS Metrics

Wijesekera [WS96] defined a set of metrics that are suitable for the lossy nature of UDP based
CM communication. Continuity of a CM stream is measured by three components; namely rate,
drift and content. For the purposes of describing these metrics, we envision a CM stream as a
flow of data units (referred to as logical data units—LDUs in the uniform framework). The ideal
rate of a flow and the maximum permissible deviation from it constitute our rate parameters.
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Given the ideal rate and the beginning time of a CM stream, there is an ideal time for a given
LDU to arrive or to be displayed. Given the envisioned fluid-like nature of CM streams, the
appearance time of a given LDU may deviate from this ideal.

The rate variations can be measured more accurately by drift parameters. Our drift parameters
specify aggregate and consecutive non-zero drifts from these ideals, over a given number of
consecutive LDUs in a stream. For example, the first four LDUs of two example streams with
their expected and actual times of appearance are shown in Figure 25. In the first example
stream, the drifts are respectively 0.0, 0.8, 0.2 and 0.2 seconds; and accordingly it has an
aggregate drift of 1.2 seconds per 4 time slots, and a non-zero consecutive drift of 1.2 seconds. In
the second example stream the largest consecutive non-zero drift is 0.2 seconds and the aggregate
drift is 0.3 seconds per 4 time slots. The reason for a lower consecutive drift in stream 2 is that
the unit drifts in it are more spread out than those in stream 1.

In addition to timing and rate, ideal contents of a CM stream are specified by the ideal contents
of each LDU. Due to loss, delivery or resource overload problems, appearance of LDUs may
deviate from this ideal, and consequently lead to discontinuity. Our metrics of continuity are
designed to measure the average and bursty deviation from the ideal specification. A loss or
repetition of a LDU is considered a unit loss in a CM stream.

The aggregate number of such unit losses is the aggregate loss of a CM stream, while the largest
consecutive non-zero loss is its consecutive loss. In the example streams of Figure 25, stream 1
has an aggregate loss of 2/4 and a consecutive loss of 2, while stream 2 has an aggregate loss of
2/4 and a consecutive loss of 1. The reason for the lower consecutive loss in stream 2 is that its
losses are more spread-out than those of stream 1.

A human’s response to video and audio is quite interesting. According to Wijesekera’s work, up
to 23% of aggregate video loss and 21% of aggregate audio loss are tolerable. The acceptable
values for consecutive loss of both video and audio are approximately 2 LDU. Up to about 20%
of video and 7% of audio rate variations are tolerable. They give an upper bound for ADF and
CDF.

5.3.3 Objectives

It is a reasonable requirement for the CM to guarantee all the QoS parameters defined above.
When the load of CM server is low, it is possible to meet this requirement. But when the number
of concurrent CM streams increase in the CM server, it becomes difficult to guarantee all the
QoS parameters. It is easy to guarantee only ALF and CLF by delaying the following LDUs,
which makes the ADF and CDF unacceptable. On the other hand, it is easy to guarantee only
ADF and CDF by delaying the early LDUs and dropping the late LDUs, which makes the ALF
and CLF unacceptable.

Given certain resources, we want to support as many as possible CM streams whose QoS
parameters are all acceptable. There are three approaches: to guarantee ALF and CLF first, to
guarantee ADF and CDF first, and to compromise between to guarantee ALF/CLF and to
guarantee ADF/CDF.
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Furthermore, as more and more clients require CM streams, the quality of service of CM server
will degrade. It is a good choice to make it degrade gracefully. To guarantee each client to be
served with some reasonable quality, admission control is also necessary.
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Figure 25. Two Example Streams Used to Explain QoS Metrics

5.4 Design of CM Server

In this section, we describe our CM server system [LSNS98] and its architecture. Its admission
control policy and QoS-driven dropping mechanism are also presented in this section.

5.4.1 Overview of Architecture

The CM server system is a typical client/server application. It includes one CM server and some
CM clients. The CM server may serve the clients concurrently. Figure 26 depicts the architecture
of a CM server that plays out multiple (single) streams to the requesting clients across the
network.

The CM server has four kinds of components. The Network Manager responds to clients’
connection requests. The QoS Manager is responsible for admission control and I/O scheduling.
Each Proxy Server communicates with a client, receiving CM stream operation requests and
sending CM data by network. Each I/O Manager reads out CM data from disks for a proxy
server. There are as many proxy servers and I/O managers as CM clients.

The CM client is relatively simple compared with the CM server. It has two main components,
one Client N/W Controller and one CM Player.
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Figure 26. Architecture of Continuous Media Server

5.4.2 CM Client Architecture

The CM client requests stream-operations (such as open, play, pause, and close) to the CM
server, and receives data from server—in some rate (given by client)}—as well as displays the
retrieved stream on the screen. It has two main modules: Client N/W Controller and CM Player.

The client N/W Controller communicates with CM server. It is responsible for forming requests
for starting CM streams, changing playback rate and other QoS parameters, and stopping the
connection. After the CM stream is started, this module keeps receiving data and put them into
common buffers.

The client CM player periodically gets a logical data unit from the common buffers and plays it
on the relevant display device.

5.4.3 Network Manager

When CM server is just started, only the network manager and the QoS manager exist. The
network manager waits for a connection request from a client. It instantiates a proxy server upon
receipt of a new connection request. The proxy server communicates with the client thereafter.
After the proxy server runs, the network manager completes its job and will wait for another
connection request. That is, the network manager delegates the connection management
functionality to the proxy server once the latter is operational.

The client’s request is in a generic structure that can be used for all types of streams, the structure
contains elements such as stream name, data rate, sampling rate, client’s PID, stream type (AU,
MIJPEQG, etc.), and the preferred QoS parameters.
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5.4.4 Proxy Server
5.4.4.1 Life Cycle of Proxy Server

One proxy server is related to each client connection. It is created when the connection is set up
and dies when the connection is stopped. The proxy server is instantiated with the initial CM
stream parameters by the network manager on a new client request. Right after it runs, the proxy
server sends the client’s initial CM stream parameters including stream name, stream type, data
rate, QoS parameters, etc. to the QoS manager and waits for answer. The QoS manager checks if
the CM stream request is admissible and answers the proxy server. If the request is rejected, the
proxy server sends a message to the client and wait for a new request from the client.

If the request was accepted, the QoS manager creates an /O manager to retrieve data from disk
for the CM stream and returned a structure to the proxy server. The proxy server then sends a
message to the client to acknowledge the CM stream request.

After the I/O manager starts the CM stream, the proxy server periodically sends LDUs to the
client according to the data rate. The detailed policy for sending LDUs is discussed in the next
subsection.

In addition to sending LDUs, the proxy server receives CM stream operation requests from the
client. The operations include open-CM-stream, close-CM-stream, play, pause, fast-forward, set-
rate, set-QoS-parameters and stop-connection. Upon each request, the proxy server forwards it to
the QoS manager and waits for answer, and sends a message of acknowledgement or rejection to
the client.

When the CM stream is finished, it is automatically closed. The proxy server sends a message to
the client and waits for requests. Upon the stop-connection request, the proxy server notifies the
QoS manager. Then the proxy server kills itself and finishes its life.

5.4.4.2 QoS Driven Dropping Mechanism

The major task of the proxy server is to send the CM stream to the client, and make it meet the
preferred data rate and preferred QoS requirements. '

The proxy server divides its service time into service cycles. The length of a service is decided by
the playback rate of the CM stream. For instance, if the data rate is 30 frames/second, the service
cycle is 1/30 second long. In the beginning of each cycle, the proxy server wakes up and sends
out an LDU. Then it waits till the beginning of next service cycle. Once the CM stream begins,
every service cycle is related with an LDU. An LDU is late for a service cycle if it is not ready at
the beginning of the service cycle. In general cases, the proxy server wakes up on time and sends
out the next LDU. However, there are some exceptions.

When a service cycle begins, the related LDU may not be ready. There are two reasons for this.
One is that the LDU is late due to the uncertainties of the computer system. The other reason is
that the LDU is scheduled not to be read out from the disk at all.

Another exception is that the proxy server may wake up late in a service cycle because the non-
real-time operating system can not guarantee the required timing. We set a small period of time
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‘t” according to the permissible drift. If the proxy server does not wake up till it ‘t’ has elapsed in
a service cycle, the proxy server is considered late.

We need to find a solution for the above cases. There are three approaches.

6. The first approach is to send the LDUs sequentially without any LDU dropping. This
approach, which is called sequential mechanism, favors the ALF and CLF QoS
parameters. Although the sequential mechanism has the best result for ALF and CLF,
other QoS parameters may be very bad and the system’s capability is restricted. First,
if a LDU is late, the proxy server must wait till the next service cycle for it to be
ready. This definitely results in LDU drift. Second, If the proxy server wakes up late
and sends out the LDU sequentially, the LDU may reach the client late too. This may
result in LDU drift. Third, since every LDU must be sent on the network, the network
load is higher than that with LDU-dropping. This result in a higher probability for the
network performance to degrade.

7. The second approach is called the pure dropping mechanism. When a LDU is late or
the proxy server wakes up late, the proxy server drops the LDU and sends the next
LDU instead. The pure dropping mechanism favorites the ADF and CDF QoS
parameters. The drift factors gets the best results, but the LDU loss may increase to an
unacceptable level.

8. The third approach tries to compromise between the loss factors and the drift factors,
and is called QoS driven dropping mechanism. As stated in section 5.3.2, in order to
achieve satisfiable video and audio effects, all the four QoS parameters must be lower
than their lower bounds.

To keep the CLF less than 3, it is just sufficient to consider the following two cases:
case L O XX 7?7
case2: 0 X0X?7?

Here ‘O’ means LDU arrives on time and ‘X’ means LDU drops or lost. Then, what should we
do for ?’ slots? If either of them is ‘X’ then CLF must be bigger than 2, that is, we cannot
guarantee the lower bound of CLF (= 2).

Therefore, we should send the ¢?” slots anyhow in these two cases even if they arrive somewhat
late (due to sending, we may get some degradation on drift QoS factors (ADF/CDF)).

Under the QoS-driven dropping mechanism, we properly compromise the trade-off between the
time (drift) and the loss QoS factors. Since the proxy server knows which LDUs were sent and
which LDUs were dropped, it is easy to calculate LDUs ALF value and CLF value.

In this way, a LDU is dropped only when the dropping doesn’t affect the video or audio effect,
and the drift factors are kept as low as possible. Furthermore, in high load, some LDUs are not
retrieved from the disks to save I/O bandwidth. Then these unretrieved LDUs must be dropped.
The proxy server also knows which LDUs are not retrieved. So this QoS driven dropping
mechanism helps to provide good performance by graceful degrading. We might have to think of
more intelligence dropping strategies for a better QoS handling on video streaming.
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5.4.5 CORBA Implementations

Extending the Socket interface to use CORBA requires some modifications to the original
C/Socket code. We replaced all C socket calls with stubs and skeletons generated from a pair of
CORBA interface definitions. One IDL interface (called CM_User) uses a sequence to transmit
the data from server to client, and the other IDL interface (called CM_Request) has operations
for opening a video stream from the server and six video functions such as play, fast-forward,
slow-forward, pause, resume and stop. The video functions change the rate of playout with the
client’s process id and a given play rate.

The IDL interfaces used in the CM server system are as follows:

typedef sequence<octet> mjpg_frame;

interface CM_User {
void putMJIPGFrame (
in mjpg_frame frame,
in short length);
Y

interface CM_Reguest
oneway void playMJPG (
in CM_User to_where,
in string name,
in short filesys,
in short rate,
in short clientpid,
in short streamtype) ;
oneway void ff(in short clientpid, in short newrate);
oneway void sf (in short clientpid, in short newrate);
oneway void play(in short clientpid);
oneway void pause(in short clientpid);
oneway void resume (in short clientpid);
oneway void stop(in short clientpid);

};

The putMJPGFrame operation of CM_User, which is part of the client interface, is called from
the server (in proxy server) with two parameters: a sequence of MJPEG frame and its length. The
playMJPG operations of CM_Request in the server side use oneway semantics for video
functions since video distribution only needs unidirectional control data transfer (from client to
server).

5.4.6 QoS Manager

Our QoS manager consists of admission controller and QoS handler. The admission controller is
responsible for admission control for a CM stream request. Once the CM request is admitted, the
QoS handler makes an I/O schedule for the CM stream.
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5.4.6.1 Admission Controller

Every request from clients is sent to the admission controller. The admission controller checks if
the request can be met without affecting the QoS of the existing CM streams. If the request can
be met, then the request is passed to QoS handler. Otherwise, the admission controller tells the
proxy server to reject the request.

A client’s requests include open/close a CM stream, and rate control operations, such as play,
pause, resume, fast-forward, set-rate, and stop-connection.

For the requests for playing, pausing, fast-forwarding, setting rate need the admission controller
to check if the resource can meet the requirements.

5.4.6.2 Conditions of Admission Control

The admission controller provides two constraint tests: I/O bandwidth test and available buffer
test. Each request (stream) arrives with some rate value (e.g. playback rate: i.e. LDUs per
second). A request is admitted if it passes the two tests.

Suppose there are n CM streams in the server, to check the availability of disk I/O bandwidth for
the new request in admission control, we use an /O bandwidth test in Equation 1.

Equation 1: seek time + rotational Latency + transfer Time < cycleLength

From the equations we figure out that longer service cycle length helps to support more CM
streams because lower percent of /O time is wasted in seek latency and rotation latency.
However, even if we could make the service cycle to be infinitely long, the number of CM stream
we could support is limited. In fact, we can not make the service cycle infinitely long. The reason
is that a longer service cycle requires a larger buffer. The available buffer size is bounded by the
physical memory size. For a CM stream to be admitted, it must pass the available buffer test.
Here we assume a dual buffer mechanism. The total buffer requirement must be smaller than
available buffer size. Hence, the requirement of admission control is to satisfy equation /O
bandwidth test and buffer test. If either of them is not satisfied, the request must be rejected.
When the acceptable ALF value for CM stream i is given as Pi, which means up to Pi percentage
LDU loss is acceptable.

5.4.6.3 QoS Handler and Scheduling

All the requests admitted by the admission controller go to the QoS handler. The QoS handler
takes care of data rate handling according to the input parameter of rate given by clients’
requests. This module also controls the dynamic QoS negotiation and management.

1. For the open CM stream request, the QoS handler starts a new I/O manager for the stream
and generates a disk I/O schedule for it.

2. For the close CM stream request, the QoS handler kills the relative /O manager.
3. For the play/pause request, the QoS handler informs the /O manager to start/stop disk I/O.

4. For fast-forward and set-rate, the QoS handler generate a new disk I/O schedule for the
stream.

82



The major task for the QoS handler is to generate the disk I/O schedule for a CM stream. In
generating disk /O schedules, first the service cycle length must be properly determined by
Equation 1. Then we decide the buffer size according to buffer test.

When the quality of service degrades in high load, some LDUs are scheduled not to be retrieved
from the disk. We use the mechanism similar to the QoS driven dropping mechanism in proxy
server to skip some LDUs. Since the two mechanisms are the same, the proxy server knows
which LDUs are not retrieved from disk. Their cooperation helps to achieve performance
gracefully degrading in high load.

When the client requests the stream to be played at the fast-forward mode, the schedule is
changed to skip more LDUs.

5.4.7 1/0 Manager

I/O manager handles the actual disk I/O and buffer management. The handler creates an I/O
manager when a CM stream is opened. The I/O manager is killed when the stream is closed.
When the I/O manager is created, it allocates the buffer according the buffer size decided by the
schedule. When the I/O manager is killed, it releases its buffer. The job of an /O manager is
simple. The QoS handler has already decided the length of a service cycle, the size of its buffer,
and which LDUs should be retrieved. The QoS handler wakes up in the beginning of each service
cycle. It retrieves LDUs according to the schedule and put them into buffer for the proxy server
to retrieve. Then the I/O manager sleeps till next service cycle.

5.5 Implementation Issues

Many implementation factors may affect the performance of our CM server. In this section, we
list some of them, including the server model, file system, the number of threads, and packet size.

5.5.1 Server Model

Our CM server system is a typical client-server application. We have two choices as our server
model: multi-threading or multiprocessing. It is not obvious what we should adopt between the
two models. The biggest advantage of multi-threading is clear—context switch is less expensive.
Moreover, CM server is an I/O bound type of application, multi-threading seems to be a good
candidate since we can take advantage of thread concurrency with less cost in terms of context
switch, memory requirement, etc. But, the time slot interval given to each process is limited,
depending on CPU load at a particular time, it could take too long for a thread to get its turn and
process a request or sending a frame. In addition to that, the streams are pretty independent if
there is no admission control module existing; thus multiprocessing also seems to be a good
candidate. Forking a new process to handle new request is straightforward, easy to program since
there is no synchronization needed. This approach is taken in both CMT and Vosaic. Finally, we
have decided to implement both of them and see how they perform. The result shows that
multiprocessing (with expensive context switch and memory requirement) performs poorly
comparing to multi-threading, which is more complicated to implement. The drift time and jitter
time when server is running multiple processes are just too large to be tolerable by human
perception. Hence, we use multi-threading for our CM server.
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5.5.2 Number of Threads

In the CM server, every independent function unit should be a single thread. The network
manager and the QoS manager exist as long as the CM server runs. Since the network manager
manages the global client connection request, it should be a single thread. Because the QoS
manager manages the admission control and generates the I/0O schedule for each stream, it should
know the requirements and status of each stream. So it must be a single thread.

The proxy servers and I/O managers do not exist unless there are some CM stream connections.
Since there is a distinct connection between a client and the CM server, it is natural to create a
proxy server to manage this connection. So, a proxy server should be a single thread. When we
first implemented the I/O manager, it was in one thread because fewer threads would result in
better performance. However, because of the synchronization between the QoS manager and the
I/O managers, the synchronization between the proxy servers and the I/O managers made the /O
manager thread block frequently. This made the disk I/O performance really bad. Finally, we
made an I/O manager for each CM stream and each I/O manager is a single thread.

5.5.3 File System

We have two choices of file system—Presto file system (PFS) [LSSKW97] and Unix File
System (UFS).

PFS provides unit (a sequence of video frames or audio samples)-based retrieval mechanisms
while UFS provides byte-oriented abstraction. In general, CM applications (such as an
application that manipulate video streams) prefer unit-oriented abstraction. UFS is efficient in
handling small size record-based file accesses, but is expensive for accessing larger files because
of tree-structured index of the file system. Since the retrieval unit used by PFS manager can be so
big (for example, 20 JPEG frames per access while 1 frame in UFS), the performance of PFS is
far better than that of UFS.

5.5.4 Packet Size

How large a packet should be? CMT has chosen 8K, which is pretty arbitrary. The breaking of
frames into packets and vice versa is necessary. UDP packets are limited in size; a whole full
color 1024x768 frame will certainly be split out at the lower network level. Losing one fragment
means losing the whole frame. If the CM delivery mechanism has some underlying network
protocol, breaking large frames up into packets is reasonable since it allows retransmitting lost
packets, not frames. But, we don’t have any network protocol in mind yet, doing so would be
redundant and would add extra work to both the client and the server. Consequently, sending
frames is chosen instead of sending packets.

5.5.5 Integration with CORBA

We ported the first version of socket-based CM server on CORBA and got a CORBA-based CM
server. The CORBA implementations were developed using single threaded versions of Orbix
2.0, which fully supported the OMG 2.0 CORBA standard. All C/socket calls were replaced with
stubs and skeletons generated from a pair of CORBA interface definition language (IDL)
specifications. The IDL specification uses sequence parameters for the data buffer rather than
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string parameters, which are a bit slow. It is because the IDL sequence mapping contains a length
field, whereas the string mapping does not. This length field makes the IDL stubs not search each
sequence parameter for a terminating NULL character.

The main drawback of using CORBA in CM Server is that the data copying overhead and the
higher fixed overhead of the CORBA implementations considerably limits the performance.

For small buffer sizes, the fact stems from the higher fixed overhead of CORBA such as memory
management makes the performance lower. For large buffer sizes, data copying overhead
significantly affects the performance of CORBA-version and it limits the throughput.

Every time each request is invoked in CORBA-version, the request message of CORBA contains
the name of its intended remote operation represented as a string. Thus CORBA demultiplexes
incoming request messages to the appropriate up-call by performing a linear search through the
list of operations in the IDL interface. Henceforth, operations in CORBA-version should be
ordered by considering this fact (i.e. decreasing frequency of use).

5.5.6 Other Issues

The next issue involves the client side. The non-deterministic nature of best effort TCP/IP and
UDP/IP makes it really hard to predict the delay time of each frame on the fly. With CM
applications, late frames are considered lost frames, duplicates of UDP frames are even worse.
The time-critical property of CM applications requires us to think of a way to prevent network
delay and jitter as much as possible. The obvious way to do that is to have the client buffers data
after some certain interval before playing back. This is exactly what is done with our CM clients.

There is one point worth noticing here, which is that at both the client and the server, there is a
classical computer science problem: the producer/consumer problem. At the client side, the
module that read frames through network and puts them into some common buffer is the
producer, while the CM playback module is the consumer. On the server side, the module that
takes frames from buffer and sends them to the client is the consumer, and the module that reads
data from disk, breaks them down to frames then puts them into the buffer is the producer. Here,
we use condition variables and mutexes to solve the problem.

5.6 Conclusions

We have attempted to summarize some of the CM server architecture and techniques to
implement distributed CM applications. We have specified and represented QoS metrics that is
applicable to lossy channel like UDP and done our CM server performance evaluation based on
those metrics. We have described the design issues, implementation details of CM servers
working for both C/Sockets and CORBA versions.

Our on-going work includes developing more intelligent algorithms and mechanisms of
admission control and QoS manager that take advantage of QoS specifications to optimize
system performance. Especially, we can take advantage of the fact that even UDP is a lossy
protocol, the number of frames lost is not that many, and in most cases, is still in an acceptable
range. This fact gives us an important observation that adding some control channel, having more
intelligent dropping mechanisms will give us good performance in terms of both timing quality
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and number of lost frames. We expect good performance results using the QoS-driven dropping
mechanism on timing drift and loss QoS factors.
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Section 6
Demonstration Application: Planning and Monitoring Air
Combat

DARPA is currently conducting the Joint Force Air Component Commander (JFACC) program
to develop information technology for air operations planning and monitoring. The overall
JFACC objective is to make the planning process continuous, objectives-based, and integrated
across all resources. This can only be done if there is an explicit, comprehensive computer
representation of the air operations plan and supporting situation data, shared by all collaborators
in the planning process.

The HDIMI project addresses five key information management problems relevant to JFACC:

« Meeting applications’ information needs—Various JFACC applications and their human
operators require different information at different levels of abstraction. They should be
provided the information they need, but no more, through views of the air operations plan as
shown in Figure 27. As an example, AOC-level planners schedule specific tasks and assign
them to units for execution. These planners must be able to define and view all tasks and
their assignments. At the wing and unit levels, planners fill in finer details such as assignment
of specific personnel and aircraft. In general, the information needs of AOC-level planners
are broader in scope but lesser in detail than those of wing and unit-level planners.
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Figure 27. Different applications require different views of plan and situation data.

* Support for multimedia data—Planners need to be able to view multimedia situation data
such as maps and imagery of potential flight paths and target zones, annotated with weather,
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enemy forces and other entities of interest. The information management infrastructure must
therefore handle multimedia data types as well as conventional structured data.

* Notifying applications of plan and situation changes—Plans are typically based on
assumptions about the situation, our objectives and resources, and estimates of theirs.
Planning applications must be notified when these assumptions no longer hold. Similarly,
situation displays should be updated dynamically as new information is recorded in the
situation database. However, applications must not be burdened with notifications of changes
to data they don’t care about.

* Access to historical information—Databases typically hold information about the current
state of the world: the current plans, current situation, etc. The information management
system should provide simple, uniform access to historical information for trend and pattern
analysis, review of the decision-making process, training, and other purposes.

* Simulation and “what if’—Effective planning in a dynamic battlefield situation requires the
ability to predict future situations based on the current situation, our plans, and projections of
enemy actions. Simulation is a category of applications unto itself, not part of the information
management function. However, the information management system should encapsulate
simulators so that their output can be accessed seamlessly using the same services by which
historical information is accessed.

As part of the HDIMI project, we have developed a demonstration application called “Planning
and Monitoring Air Combat” (PMAC) that illustrates solutions to the first three items. The last

two relate to the Active Views history abstraction, which has been defined but not implemented
in Sonata.

This section describes the PMAC application. Included are:

e An application overview;

e The user interfaces;

The ObjectStore schema, originally defined using Booch notation with Rational Rose;

The transactions for initializing the database and for conducting the scenario;

e A scenario in terms of those transactions.

6.1 Application Overview

The demonstration involves three types of operators: an Air Operations Center (AOC) planner,
one or more Wing Operations Center (WOC) planners, and a simulation operator. The AOC
planner performs the following functions:

¢ Generates target objectives and desired complement of platforms to be used for the strike.

* Assigns each target objective to a particular wing on the basis of availability of the required
platform types at the time of the strike.

» Reassigns a target objective if the originally assigned wing fails to achieve the objective.

The WOC planner performs the following functions:
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e Assigns specific platforms of the required types to target objectives.

e Revises assignments of platforms to objective as necessary, e.g. if an assigned platform
becomes non-operational. If an objective becomes infeasible for the wing to accomplish
given available platforms, the WOC planner can mark the objective as “failed”, thereby
handing the objective back to the AOC planner for reassignment.

The simulation operator changes the status of individual air platforms from “FullyOperational” to
“PartlyOperational” or “NonOperational”, representing failures of some sort that prevent
participation in a mission.

6.2 User Interfaces

The AOC planner, WOC planner, and simulation operator each have a dialog box in which they
can enter transactions to update the database. See Section O for the list of transactions. In
addition, the AOC planner has an Active View of all TargetObjectives and all associated
attributes, displayed in tabular format; the WOC planner has a similar display of the
TargetObjectives assigned to his wing. Each also has a map-oriented display of target objectives
with color coding to indicate whether the objective has aircraft of sufficient number and correct
type assigned to strike it.

6.3 Schema

The schema was developed using Rational Rose. It includes class definitions and accompanying
documentation. Figure 28 is the Booch diagram for the schema. Class specifications exported
from Rational Rose follow.

——

—_— —_
- c2AirPlatiorm ~

_ TailNumber : string
Status : string = "FullyOperational”
/ T _/

ssignedPlatforms

ignedObjectiye” — —
InstanceQfType / TargetObjective ™~
0.1 TargetObjectiveldentifier : string /
(" Priority : integer = 0
~— Status : string = "unassigned” \
Comment : string =" )
PlatformType AssignedOrgName : string = "AOCL
WAssignedTargetName : string
— T~ \\ —
- AirPlatformType ™ Strategylsage
~_ PlatformTypeName : string
\ T
—1
TypeOfRequirement
RequirementsOfType StrategyUsed
— n o~ 0.1
PlatormType T T
Requirement 1 TargetStrategy

T - TargetStrategyName : strin (
Number : integer=1_J) n StrategyOfRequirement ~— g o o

— RequirementsOfStrategy S~ —

Figure 28. PMAC Application Schema
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Class name:
c2AirpPlatform

Category: <Top Level>

Documentation:
An entity whose primary operating environment is
between 0 and 100,000 feet above sea level

Actual location and status are updated by the
simulation operator for the purpose of demonstration.
Speed and heading are inferred from these.

Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: none
Associations:

AssignedObjective : TargetObjective
PlatformType : AirPlatformType

Public Interface:
Attributes:
TailNumber : string
Unigque identifier of the aircraft

Status : string = "FullyOperational"
This attribute is in the C2
schema w/ no documentation. We
will take it to mean operational
status: ability to perform its
function: "FullyOperational",
"PartlyOperational"
"NonOperational"

Class name:
AirPlatformType

Category: <Top Level>

Documentation:
Introduced by JPR. Models a model of air platform (e.g.
F15) as opposed to a specific instance of it.

Instances are created manually in the DB for the
purposes of demonstration.

Export Control: Public

Cardinality: n

Hierarchy:
Superclasses: none
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Associations:

InstanceOfType : c2AirPlatform
RequirementsOfType : PlatformTypeRequirement

Public Interface:
Attributes:
PlatformTypeName : string

Class name:
TargetObjective

Category: <Top Level>

Documentation:
(This model departs from the JTF model) An instance of
TargetObjective represents a need to strike a
particular target in a particular timeframe. There
could be multiple TargetObjectives for the same target.

Created by AOC Planner for purposes of demonstration.
Modified by WOC Planner.

Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: none
Associations:

AssignedPlatforms : c2AirPlatform
StrategyUsed : TargetStrategy

Public Interface:

Attributes:
TargetObjectiveldentifier : string
Priority : integer = 0
Status : string = "unassigned"

Status of the TargetObjective.
Values include:

Unassigned: WOC has not assigned
the objective to a wing to
accomplish

Assigned: WOC has assigned the
objective to a wing, but the wing
has not allocated platforms and
designated a start and end time
Scheduled: WOC has allocated
platforms and designated a start
and end time

Failed: Wing cannot achieve the
objective as specified by the AOC
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(Put reason why not in Comment
field)
Achieved: Wing has accomplished
the objective
Comment : string = ""
Text field for communication
between AOC and WOC, e.g. if
Status is Failed, reason for
failure

AssignedOrgName : string = "AQC"
The name of the organization
currently responsible for
achieving the objective

AssignedTargetName : string
Printable name of a target that
this objective is directed
against

Class name:
PlatformTypeRequirement

Category: <Top Level>

Documentation:
Defines the number of instances of a particular
PlatformType needed for a particular TargetStrategy

Instances are created manually in the DB for the
purposes of demonstration.

This object type could be replaced by an n-n
association between AirPlatformType and TargetStrategy,
with an associated Number attribute.

Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: none
Associations:

StrategyOfRequirement : TargetStrategy
TypeOfRequirement : AirPlatformType

Public Interface:
Attributes:
Number : integer = 1
The number of instances of a
given PlatformType regquired for
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the given TargetStrategy

‘C1ass name:
TargetStrategy

Category: <Top Level>
Documentation:
A particular strategy for attacking targets.

Instances are created manually in the DB for the
purposes of demonstration.

Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: none
Associations:

StrategyUsage : TargetObjective
RequirementsOfStrategy: PlatformTypeRequirement

Public Interface:
Attributes:
TargetStrategyName : string
Identifies a particular strategy
for attacking targets

6.4 Transactions

The transactions have a command-line syntax consisting of a command name followed by zero or
more parameters. Some parameters are optional, as indicated below. A command line syntax is
used so that transaction script files can be written and executed.

The transaction names are meant to be short but reasonably mnemonic. The following are
transaction naming conventions:

¢ The name of a transaction that creates an object is an abbreviated form of the object’s class
name.

¢ The name of a transaction that deletes an object is the same name, preceded by “x”.
o Queries begin with “q”.
6.4.1 AirPlatformType

apt PlatformTypeName

Creates an AirPlatformType with the specified Plat formTypeName (key attribute).
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xapt PlatformTypeName

Deletes an AirPlat formType and any associated instances of
PlatformTypeRequirement. Fails if there are any associated instances of
c2AirPlatform.

gapt
Listall AirPlatformTypes.
6.4.2 TargetStrategy

ts TargetStrategyName

Creates a TargetStrategy with the specified TargetStrategyName (key attribute).

xts TargetStrategyName

Deletes a TargetStrategy and any associated instances of
PlatformTypeRequirement.

tsrgt TargetStrategyName PlatformTypeName Number

Specifies the required number of a platform type for a given target strategy. Both the type and
strategy must exist. If Number <=0, the requirement is removed.

gts
Lists all TargetStrategys, including the required number of each AirPlatformType
6.4.3 TargetObjective

to TargetObjectiveldentifier AssignedTargetName Priority

Creates a TargetObjective with the specified TargetObjectiveIdentifier (key
attribute), AssignedTargetName, and Priority. Sets Status="“Unassigned”, Comment=
“? AssignedOrgName='", and StrategyUsed=nil.

xto TargetObjectiveIdentifier

Deletes TargetObjective and unassigns any platforms assigned to that objective.

tostrat TargetObjectiveldentifier [TargetStrategyName]

Assigns the specified TargetStrategy (or nil) to the specified TargetObjective.
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toorg TargetObjectiveldentifier [AssignedOrgName]

Assigns the specified AssignedOrgName to the specified TargetObjective and sets its
Status to “Assigned”. If no AssignedOrgName is given, set AssignedOrgName to “”
and Status to “Unassigned”.

gto [AssignedOrgName]

Lists all TargetObjectives, with all attributes and TargetStrategyName if any. If
AssignedOrgName is specified, list all that are assigned to the specified organization.

gtoap [TargetObjectiveIdentifier]

Lists the specified TargetObjective, with all attributes, the TargetStrategyName, if
any, and the TailNumbers assigned to that TargetObjective, grouped by
PlatformTypeName. If TargetObjectiveIndentifiex is not specified, do this for all
TargetObjectives.

6.4.4 AirPlatform

ap PlatformTypeName TailNumber OwnerOrgName

Creates a c2AirPlatformof a specified AirPlatformType, TailNumber (key
attribute), and OwnerOrgName. Sets Status to “FullyOperational” and
AssignedObjectivetonil.

xap TailNumber

Deletes a c2AirPlatform and any associations it has.

apstat TailNumber Status

Sets the Status of the specified c2AirPlatform.

apobj TailNumber [TargetObjectiveldentifier]

Assigns a c2AirPlatform to the specified TargetObjective or unassigns it.

gap [OwnerOrgName]

List all c2AirPlatforms, with all attributes, associated Plat formTypeName, and assigned
TargetObjectiveIdentifier, if any. If OwnerOrgName is specified, list all that are
owned by the specified organization.

6.5 Scenario

This section defines a sample scenario to illustrate the Active View mechanism. Much more can
be added to show how various database updates influence the Active Views; this is just a start.
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Also, the definitions of the target strategies and the appropriateness of them for particular target
objectives needs to be reviewed and corrected by an air operations planning domain expert.

The scenario has two parts: database initialization and the run-time scenario. The database
initialization need only be done once. The run-time scenario can be done multiple times. In the
scenarios, actual transactions are shown in plain text; comments about what is about to be done
and what the results should be are in italics.

6.5.1 Database Initialization

The following is database initialization, performed before the scenario takes place. It includes
defining the air platform types, actual instances of air platforms, and target strategies.

Initialization Transaction

apt A-10

apt A-4

apt A-6

apt A-7

apt B-2

apt B-52

apt F-104

apt F-111

apt F-117

apt F-15

apt F-16

apt F-5

apt FA-18

ap F-5 F-5.1 Wing1

ap F-5 F-5.2 Wing1

ap F-5 F-5.3 Wing1

ap F-5 F-5.4 Wing1

ap F-5 F-5.5 Wing1

ap B-2 B-2.2 Wing1

ap B-2 B-2.2 Wing1

ap F-117 F-117.1 Wing1
ap F-117 F-117.2 Wing1
ap F-117 F-117.3 Wing1
ts DayCloseAirSupport
tsrqt DayCloseAirSupport A-10 4
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Initialization Transaction

ts DaySmallTarget

tsrqt DaySmallTarget F-5 4

ts StealthBigTarget

tsrqt StealthBigTarget B-23
tsrgt StealthBigTarget F-117 4
ts NightSmaliTarget

tsrgt NightSmaliTarget FA-18 2

tsrqt NightSmaliTarget F-16 2

6.5.2 Run-Time Scenario

The following is a simple run-time scenario. It can be easily extended to include more
transactions or to add another WOC. The scenario is divided into three columns to indicate what
happens on the three user interfaces.

AOC Wing 1 WOC Simulation Operator

Query air platform types.

qpt

Result should be the types entered
during initialization

Query target strategies.

| ats

Resuit should be list of target
strategy requirements entered during
initialization.

Create target objectives and define
strategies.

to t1 PowerPlant 1

to t2 CommandPost 3

tostrat t1 DaySmaliTarget

tostrat t2 StealthBigTarget

Assign target objectives to wing.
toorg t1 Wingt

Active view of target objectives
should show the newly assigned
target objective.

Find out what aircraft the wing has
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AOC

Wing 1 WOC

Simulation Operator

and their status
gap Wing1

Result should be the five F-5's
entered earlier. Now assign four of
them to the TargetObjective

apobj t1 F-5.1
apobj t1 F-5.2
apobjt1 F-15.3
apobjt1 F-15.4

With the assignment of the fourth F-
5 to the target objective, the WOC
active should be updated to show
that TargetObjective t1now has
sufficient aircraft to satisfy its
objectives

The WOC Active View should show
that TargetObjective t1 no longer
has sufficient aircraft, since one of
the assigned ones is
NonOperational. Now query the set
of aircraft again to find out which one
went NonOperational and to locate
an Operational one that is not
assigned

gap Wing1

Result should show five F-5’s
belonging to Wing1, with F-5.3
NonOperational and assigned, but F-
5.5 Operational and unassigned. Fix
the assignment,

apobj F-5.3

apobj F-5.5 t1

The WOC Active View should show

that TargetObjectivet1 has sufficient
aircraft again.

Mark one of the assigned aircraft as
nonoperational

apstat F-5.3 NonOperational
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Section 7
Conclusions

The HDIMI project has substantially achieved its technical objectives, as summarized in Section
1.3. While we have not been able to achieve all the goals we set out at the beginning of the
project (distributed resource management, content-based query), we believe that Sonata
represents a significant technical advance in active data management.

7.1 Dual-Use Applications

We believe that Active Views and the related technologies developed in this project have
significant value to military command and control systems, Honeywell’s monitoring and control
system offerings, and the broader information technology market—any domain where “situation
awareness” is a key application requirement.

Honeywell is implementing a strategy to commercialize this technology through third-party
vendors that serve this broader market. We believe that this form of commercialization is in the
best interests of both Honeywell and the Government. As an incentive to potential
commercializers, Honeywell has filed a patent application on key Active View concepts and
would license the patent to third-party commercializers.

7.2 Recommendations for Future Work

The HDIMI project has focussed primarily on developing broadly-applicable information
management technology as opposed to C*I applications. The technology is sufficiently mature
that it should be used and evaluated in the context of application-oriented programs such as
DARPA’s JFACC, Dynamic Database, and Adaptive Information Control Environment (AICE)
programs. To this end, Honeywell and the University of Minnesota have submitted a number of
proposals to DARPA. All have been deemed “selectable” but none has been funded. We continue
to pursue this course of action and solicit AFRL assistance.

A second path that can be pursued simultaneously is to extend the capabilities of the existing
Sonata technology. The four projects listed below represent our recommendations in this
direction.
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7.2.1 Active Collaboration Information Server (ACIS)

Objective: Develop an Active O - - r!
[apprall [ HCi |Apprn | Hei
AL AL AA
] I

Collaboration Information Server (ACIS)
that supports large-scale collaboration and
situation awareness applications such as

Y Y Y Y

JFACC and Command Post of the Future. e z

ACIS is an active, distributed information ACIS [F—— < ACIS
server that provides applications and users <

with consistent, dynamically updated yy > yy

information that meets their specific
collaboration and situation awareness
needs. ACIS supports structured data and — —
multimedia data types such as images, text,
and video to provide realistic depictions of
the situation.

<«—> Query/Response

9 Query with Initial Response and Change Notifications
Approach: Build on Active Views ——> Update

technology demonstrated in the HDIMI

project. Active views are an integrated set of mechanisms that provide uniform treatment of state,
state change, and state history for arbitrary object types throughout a system. These objects
include sensors and user interface objects as well as database-resident objects. Enhance the
technology to provide a robust, scalable, software capability that makes effective use of COTS
technology and that can be readily integrated in large-scale technology demonstrations.
Extensions to improve functionality, scalability, performance, and reliability include:

* Distributed active servers with selective information replication and distribution;

* Dynamic Active View creation to satisfy new information needs while the system is running;
* Incremental view maintenance to reduce processing and bandwidth requirements;

* View materialization to improve response time;

» Aggregation of similar views to reduce redundant computation.

Demonstrate and evaluate ACIS as a basis for large-scale collaboration through a technology
integration experiment with selected C*I applications.

Capability Developed: An active, distributed information server implementing Active Views
technology using COTS DBMS and ORB.

Potential Users: C*I applications requiring information-intensive, distributed collaboration or
situation awareness, e.g. JEACC, Command Post of the Future.

7.2.2 ACIS-Application Integrated Environment (ACIS-AIE)

Objective: Extend ACIS to be a general-purpose CI decision support environment that
transparently integrates data storage/retrieval and application-specific computation in response to
user queries. For example, to answer the query “What are our options for evacuating civilians
and what are their likely outcomes?”, ACIS will invoke planning, scheduling, and simulation
applications, initializing them from stored battlefield situation data and storing intermediate
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results back in the database. As the figure illustrates, ACIS-AIE uses both data push and data
pull. Some applications may run prior to a user’s query (data push) and some in response to it
(data pull). A client should be able to pose queries and perceive no difference, except possibly in
response time, between these two modes.

Data Pull

Data Push

#

( Planner \ (, Scheduler \ (, Simulator
E v V]

Approach: Providing such a capability requires several technical advances, including:

» Well-defined semantics for referencing large-granularity application-specific functions in a
query;

* Seamless integration of database and simulation techniques to answer queries about the
present and future situations;

* Optimization techniques that generate efficient plans for computing query results,
interleaving database access and application execution;

« Techniques that allow combinations of data push and data pull, invisibly to clients.

Capability Developed: An active, distributed decision support environment that integrates 1
applications and database access to meet users’ information needs.

Potential Users: C*I applications involving situation awareness, planning, and simulation.
7.2.3 Quality-Adaptive Information Management (QAIM)

Objective: Develop and demonstrate information management functions that adapt their
information quality in response to user requirements and system conditions. Here, quality is
defined at the information management level, and includes accuracy of the information provided,
as well as its timeliness and precision. Embed the techniques in the evolving Active
Collaboration Information Server.

The quality of decision making in a CPOF-type command and control scenario is critically
dependent on the quality of information available to the decision-makers. Specifically, it is
important to ensure that the current state (captured by the current values of the state variables)
observed by the decision-makers is close enough to the current real-world situation. The current
state includes incoming audio and video, various data displays, and results of computations.

Providing high quality information with low cost is of great interest in the command and control
environment, e.g. shared situational awareness requirements for the CPOF. Ongoing DoD
sponsored efforts are addressing some aspects of the problem, e.g. DARPA’s program on quality
of service based resource management (Quorum). However, so far almost all effort on
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information quality has been in the context of networks and resource management, and especially
for continuous media. From a command-and-control view point, one could reasonably argue that
the underlying infrastructure must provide its best-effort for information provisioning, and for
data types such as audio and video this is quite acceptable. However, for many other kinds of
data, e.g. computed values, sensor readings, etc., it is important to make the information quality
explicit, so that the application knows how much it can rely on the information for its decision
making. This requires that the ideas of quality of information and its servicing be an integral and
explicit part of the information management capability.

Approach: Our approach will extend the concept of information quality to various types of
information, including numeric and aggregate values, computed values, sensor readings, images,
etc., in addition to audio and video. We will develop models for information quality and
mechanisms for delivering quality information, and incorporate them in the ACIS system.
Technical innovations include:

* Models of information quality for numeric and aggregate values, computed values, etc.
* Mechanisms, i.e. algorithms, for providing information with requisite quality.
* Analysis of information quality vs cost tradeoffs.

Many of these techniques affect the core functionality of COTS DBMS products. We will pursue
approaches that work around the limitations of COTS products.

Capability Developed: The capability developed will be extensions to the Active View
definition language to specify the information quality requirements of various kinds of data
types. This specification will be used by the underlying information management mechanisms for
information provisioning with the desired quality of service.

Potential Users: C*I applications involving situation awareness.
pPp g

7.2.4 Temporal ACIS

Objective: Extend ACIS to provide
robust support for the time dimension in
distributed C*I information management
systems. For example, the query
“Summarize the changes made to the air
operations plan over the last shift”
requires access to potentially large
volumes of historical data on AOC and
WOC systems. The query “How were our
aircraft deployed at the time of the
attack?” requires temporal alignment of
the historical information at multiple sites
and a representation of the uncertainty of the sequence of events.

Approach: Extend Active Views history concepts to encompass histories of complex,
distributed collections of objects. Key technical issues to be addressed include:
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* A precise definition of summaries or views of object state changes (as opposed to database
states).

« Imperfect information about the relative ordering of events in a distributed system.

« Efficient searching of object histories for large numbers of arbitrary objects (as opposed to
“conventional” temporal relational data) in a distributed system.

Potential Users: Distributed C*I applications involving historical search and analysis.
“Those who cannot remember the past are condemned to repeat it.”—George Santayana

“To be a successful soldier you must know history.”—Gen. George S. Patton
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Section 10
Software Documentation

10.1Application Development Tools

This section documents the design of the Program Development Tool (PDT). It illustrates the
modularity of the program, and describes the classes and methods used. Although the design is
fairly language independent, familiarity with object-oriented languages (preferably Java) or
methodology is required.

The Program Development Tool allows the user to create a distributed multimedia application.
The application program is then transferred to the User Interface Development Tool (UIDT) to
specify the user-visible behavior of the components of the system. Finally, the program is
transferred to the Sonata run-time, which executes it after some pre-processing.

The PDT runs under any machine that supports the Java Virtual Machine. It is written in Java, so
it is portable to any platform that supports it.

The remainder of this section describes the classes and methods that are defined in the system. It
describes the private and public APIs that the classes support. For more details on the methods
and APIs, browsing through the source code is recommended. The source code is well
commented and easy to read.

10.1.1 Block Class

The block class is used to represent the information stored for a particular block. Methods
represent the operations that the class can handle.

10.1.1.1 Private Data
The private information stored in the block class is

* block_name: String

e block_num: int

* block_dimension: Rectangle
* port_list: Vector

* param_list: Vector

* selected: boolean

* foreign: boolean

10.1.1.2 Constructor

* Block ()
This function creates and initializes the contents of the Block class. Usually invoked
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whenever a new block object is created
Return Value: None

10.1.1.3 Public methods
The public methods for this class are

* set_block_name (String name)
This function sets the block name of the Block object. Usually invoked to set the block name.
Return Value: None

» get_block_name ()
This function gets the block name of the current Block object. Usually invoked to retrieve the
block name.
Return Value: String block_name

» Similar methods exist for setting and getting the other data objects—block_num,
block_dimension, selected and foreign.

* add_port (Port newport)
This function adds a port to the existing list of ports.
Return Value: None

* add_param (Param newparam)
This function adds a parameter to the existing list of parameters.
Return Value: None

* setParamValue (String p_name, String p_value)
This function sets the parameter value of p_name to the specified value (p_value).
Return Value: None

* print_param_name (PrintStream outp)
This function prints the parameter information to the output stream. Usually this function is
invoked when saving to a file is called.
Return Value: None

* print_param_value (PrintStream outp)
This function prints the parameter value to the output stream. Usually, this function is
invoked when saving to a file is called.
Return Value: None

* draw (Graphics gc)
This function draws the block on the screen canvas. It is invoked whenever the refresh or
update canvas function is called.
Return Value: None

* move (int dx, int dy)
This function moves the block on the screen by delta values in the X and Y directions
Return Value: None
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10.1.2 Connection Class

The connection class represents the list of connections for the current application. The methods
in this class represent the actions that can be performed on these classes.

10.1.2.1 Private Data
The private information stored in the connection class is

« from_block_num: int
 from_port_name: String
* to_block_num: int

* to_port_name: String

10.1.2.2 Constructor

The default constructor is used for this class.
10.1.2.3 Public Methods

The public methods for this class are

* set_values (int fromBlockNum, String fromPortName, int toBlockNum, String toPortName)
This function sets the values for the internal data elements.
Return Value: None

» draw (Graphics gc, Block fromBIk, Block toBlk)
The draw function draws the connection on the screen canvas. This connection is drawn from
the fromBIk to the toBlk. The line coordinates and the arrow direction are calculated in this
function.
Return Value: None

10.1.3 ProgFile Class

This class represents the information for a particular application program. Each program is stored
in a ProgFile object.

10.1.3.1 Private Data
The private information stored in the ProgFile class is

* BlockList: Vector

* ConnectionList: Vector
* max_block_num: int

* ClipBlockList: Vector
* ClipConnList: Vector
¢ CanvasWidth: int
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* CanvasHeight: int
* CanvasLocation: String

10.1.3.2 Constructor

* ProgFile ()
The constructor for this class creates space for Blocks and Connections. The data elements
are initialized.
Return Value: None

10.1.3.3 Public Methods
The public methods for this class are

» addBlock (String BlockName)
addBlock (int BlockNum, String BlockName)
addBlock (int BlockNum, String BlockName, Rectangle dim)
This functions adds the block named BlockName to the list of blocks in the application
program.
Return Value: None

* print_block_list (PrintStream outp)
print_block_list (Vector blklist, PrintStream outp)
This function prints the block information of the application. This function is typically
invoked when the save function is called.

* addConnection (int fromBlockNum, String fromPortName, int toBlockNum, String
toPortName)
This function adds the connection as specified by the parameters to the list of connections in
the application program.
Return Value: None

* print_connection_list (PrintStream outp)
print_connection_list (Vector connlist, PrintStream outp)
This function prints the connection information of the application. It is typically invoked
whenever the save function is called.
Return Value: None

 draw (Graphics gc)
This function is typically called to draw the program information (blocks and connections) on
the screen canvas. Updates on the screen are also done using this function.
Return Value: None

* cutToClipBoard ()
This function removes the selected blocks and puts them in the clipboard for future use. The
clipboard is an offscreen buffer.
Return Value: None

* copyToClipBoard ()
This function only copies the selected blocks and puts them in the clipboard. It does not
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remove them from the screen canvas.
Return Value: None

* pasteFromClipBoard ()
This function may be used to copy the contents of the clipboard on to the screen canvas.
Return Value: None

e is_blk_in_list (int block_num, Vector BList)
This function lets you know if the block number block_num is in the list BList.
Return Value: TRUE if yes, FALSE if not

* zoomlIn ()
This function zooms into a composite block. All the underlying blocks are exposed and a
blue rectangle encloses the composite block.
Return Value: None

10.1.4 SonataFile Class

The SonataFile class represents the information and procedures involved with the storage and
retrieval of the application program data from the underlying file system.

10.1.4.1 Private Data
The private information stored in the SonataFile class is

* FileName: String
* DirName: String
» FileNameSet: boolean

10.1.4.2 Constructor

* SonataFile () .
The constructor function for this class sets the private data fields to their default values.
Return Value: None

10.1.4.3 Public Methods
The public methods for this class are

* setFileName (String dir, String file)
This function sets the file name and directory name of the current file to the values specified
as parameters.
Return Value: None

* unsetFileName ()
This function unsets the current file and directory name.
Return Value: None

* getAbs ()
This function returns the absolute file name of the current file, if set.
Return Value: Absolute file name as a String
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* saveToFile (ProgFile CurrProgFile)
This function saves the current application program to the current file.
Return Value: None

* openFile (ProgFile CurrProgFile)
This function opens the current file and reads the program data from it. The application
program data is stored in the parameter program file.
Return Value: TRUE if successfully read, FALSE if not

10.1.5 SonataGUI Class

The SonataGUI class contains information pertaining to the graphical user interface and its
representation.

10.1.5.1 Private Data
The private information stored in the SonataGUI class is

* CurrentFile: SonataFile

* CurrentProgFile: ProgFile
* mainCanvas: SonataCanvas
* isInit: boolean

10.1.5.2 Constructor

* SonataGUI ()
The constructor function for this class defines the user interface hierarchy and sets up the
Frame window. It creates the menu bar, the canvas and the push buttons needed for the
application.
Return Value: None

10.1.5.3 Public Methods
The public methods for this class are

* handleEvent (Event evt)
This function handles user events, ranging from mouse clicks to menu action items. It
triggers off the relevant module depending on the action. This is an override of the
handleEvent method of the parent class.
Return Value: TRUE if handled successfully, FALSE if not

10.1.6 SonataCanvas Class

The SonataCanvas class represents the information need to manage the canvas that appears on
the screen. The handling of the user events over the canvas as well as the drawing of blocks and
connections on screen are managed by this class.

10.1.6.1 Private Data

The private information stored in the SonataCanvas class is
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CanProgFile: ProgFile

* mode: int

offScreen: Image

imagewidth: int
* imageheight: int
10.1.6.2 Constructor

« SonataCanvas (ProgFile aProgFile)
The constructor function for this class sets up the screen canvas with default values for
background color, foreground color and mode. It also initializes the program application file
to the one specified.
Return Value: None

10.1.6.3 Public Methods
The public methods for this class are

* paint (Graphics gc)
This function is called by the event handler to draw the blocks on the canvas. Usually, the
refresh and initial draw commands make use of this function.
Return Value: None

* mouseDown (Event evt, int X, int y)
This function is called when ever the mouse is clicked over the canvas. A check is made to
see what the users intentions are
Return Value: TRUE if action has been handled, FALSE if not

» mouseDrag (Event evt, int X, int y)
This function is invoked when ever the user drags the mouse over the canvas. A check is
made to see what the user intends to do.
Return Value: TRUE if the action has been handled, FALSE if not

10.1.7 Utility Classes

There are a number of other classes that are used in the system. Most of these are utility classes—

they serve an important task in the system but are more general-purpose. This section describes
these classes.

* BlockInfoDialog Class

The function of this class is to bring up a dialog window that describes the properties of a
block. The user can update these properties or just view them.

* BoldLabel Class
This is an extension of the Label class and its primary aim is to provide labels in bold.

* ChangeParamDialog Class

This class is used by the user to change the parameters of a particular block. It is usually
invoked from the block information dialog window
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* ConnectionInfoDialog Class
This class displays the connection information during the creation of a new connection. It
prompts the user to enter the to and from block numbers and port names.

» createBlockDialog Class
This class is created whenever a Create New Block command is issued. The user is prompted
for block information.

+ EditSourceDialog Class
This class is used to invoke a dialog window that allows the user to edit the current source
code.

» Param Class
This is a simple class to handle parameters.

* Port Class
This is a simple class to handle ports.

» SelectFile Class
This class is invoked to create a file selection dialog, from which the user can select a
particular file.

* Sonata Class
This class can be used to start the application.

* SonataButton Class
This is an extension of the PushButton class.

* SonataText Class
This class is an extension of the TextField class.

» WarningDialog Class
This class allows the creation of warning dialog message windows.

* YesNoDialog Class
This class is used to create a dialog window that prompts the user to choose Yes or No.

10.1.8 Conclusion

This section has documented the various classes used in the system design and the methods
involved. It is a comprehensive list of functions that can be invoked from each of the classes. It is
intended to serve as an API reference for future programmers of PDT.

It will hopefully serve as a guide to designing toolkits and graphical user interface applications. It
is hoped that experiences with this system will help guide the way for future projects in this area.

10.2Continuous Media Server
10.2.1 Introduction

This section documents the design of the Continuous Media Server (CM Server). It illustrates the
modularity of the program, and describes the functions, classes and methods used. The CM
Server can be running as an independent application alone, so it allows the user to play the stored
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MIPEG video files with a video functionality user interface regardless of the Active View
System. A video clip as a field in AOC and WOC views can also invoke it.

10.2.2 Program Modules

The programs for CM Server are composed of two parts: server and client. There are some
common modules used for both server and client and we have a text- version client
(dummyClient) just for debugging. The detail source files are as follows:

10.2.2.1 Modules for Server

¢ main.c: CM server main file.

e network.c: file which includes network-related functions such Network Manager module,
Proxy server module, and Video functions.

e cmStream.c: file which initializes CM stream-related data structures.
e UFSstream.c: file which includes UFS I/O Manager module.
¢ PFSstream.c: file which includes PFS /O Manager module.

1oUtil.c: file which includes some miscellaneous file I/O functions.

10.2.2.2 Modules for Client

e client.c: graphic-version CM client file including clientNetController, Tk/Tcl library
interface functions, CM-Playback, and Parallax-control module.

e dummyClient.c: text-version CM client file.

10.2.2.3 Common Modules for Server/Client

¢ global.c: file which includes globally used functions.
¢ timeMeasurement.c: file which includes a function that gets current time.
¢ errorHandlers.c: file which includes error handling routines.

10.2.2.4 Orbix-related modules

e CM.idl: file which includes Orbix-version CM Server interfaces.
e CMS.cc: Orbix-made server-related file.
e CMC.cc: Orbix-made client-related file.

10.2.2.5 Executables

e server*: CM Server executable.
e client*: CM Client executable (graphic mode: Parallax version).

¢ dummyClient*: CM Client executable (text-mode).
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10.2.3 Functions in Source Modules
10.2.3.1 Server Modules
10.2.3.1.1 main.c

e main(argc, argv): CM Server main function.

10.2.3.1.2 network.c

» networkManager(portNum): Network Manager main function which tells Orbix daemon
that we have completed server’s initialization.

e CM_Request_i::playMJPG(CM_User_ptr,name,fileSys,rate,clientPid,streamType): Sends
an open (initial Play) request from client to server with initial parameters.

e CM_Request_i::ff(clientPid, newRate, env): Fast-Forward Video function.
o CM_Request_i::play(clientPid, env): Slow-Forward Video function.

e CM_Request_i::pause(clientPid, env): Pause Video function.

o CM_Request_i::resume(clientPid, env): Resume Video function.

e CM_Request_i::stop(clientPid, env): Stop Video funciton.

e ProxyServer(ptr_to_requestFromClient): Main module for Proxy Server which gets
requests from clients, processes the request and sends the data to QoS Manager.

10.2.3.1.3 gqosManager.c

o AdmController(rate): Admission Controller which checks disk I/O bandwidth to determine
if we accept the new request.

10.2.3.1.4 cmStream.c

e CleanStream(index): Initializes CM stream data structures.

10.2.3.1.5 UFSstream.c

e UFSMjpeglOManager(index): UFS /O Manager threshold.
10.2.3.1.6 PFSstream.c

e PFSMjpeglOManager(index): PFS I/O Manager threshold.
10.2.3.1.7 ioUtil.c

¢ FileSize(fileName): file I/O function to check file size.
o FileExist(fileName): file I/O function to check file existence.

10.2.3.2 Client Modules
10.2.3.2.1 client.c

¢ main(argc, argv): Main funciton of CM client.
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e timeout(signal): Checks SIGALRM and lets the client quit when time out.
e sig usr(sig_num): Interrupt handler for user-defined signal (signal handling function).

e clientNetController(arge, argv): Client Network Controller thread which sends input

parameters to the relevant Proxy Server in CM Server and CM_Playback module to display

MIJPEG data on X-Window using Parallax libraries and card.

e myTclApplnit(Tcl_Interp): Initializes standard Tcl and Tk libraries, and loads a video
function configuration file.

e CMPlayback(argc, argv): CM Playback function which initializes X-window & Parallax
libraries, and displays MJPEG video frame.

e CM_User_i::putMJPGFrame(mjpg_frame, length, env): Function which reads MJPEG data

from CM Server via Orbix.

10.2.3.2.2 dummyClient.c:
Functions are the same as those in client.c
10.2.3.3 Common Modules

10.2.3.3.1 global.c

U CleanUp(arg): Closes a Socket (only used in TCP/IP version).

10.2.3.3.2 timeMeasurement.c

e GetCurrentTime(): Retrieves the current system time.

10.2.3.3.3 errorHandlers.c

e errorQuit(msg, ...): Returns error message and exits.

e errorReturn(msg, ...): Returns error message (no exit).

e note(msg, ...): Dumps out some messages for notice (debugging).
e warning(msg, ...): Dumps out some messages for warning.

10.2.3.4 Orbix-related modules

o interface CM_User {
putMJPGFrame(mjpg_frame, length);
}

¢ interface CM_Request {
playMJPG (to_where, name, filesys, rate, clientPid, streamType);
ff (clientPid, newRate);
sf (clientPid, newRate);
play (clientPid);
pause (clientPid);
resume(clientPid);
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stop (clientPid);
}
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